import logging import time from generator.generate_response import generate_response from retriever.retrieve_documents import retrieve_top_k_documents from generator.compute_metrics import get_metrics from generator.extract_attributes import extract_attributes def retrieve_and_generate_response(gen_llm, vector_store, query): logging.info(f'Query: {query}') # Step 1: Retrieve relevant documents for given query relevant_docs = retrieve_top_k_documents(vector_store, query, top_k=5) #logging.info(f"Relevant documents retrieved :{len(relevant_docs)}") # Log each retrieved document individually #for i, doc in enumerate(relevant_docs): #logging.info(f"Relevant document {i+1}: {doc} \n") # Step 2: Generate a response using LLM response, source_docs = generate_response(gen_llm, vector_store, query, relevant_docs) logging.info(f"Response from LLM: {response}") return response, source_docs def generate_metrics(val_llm, response, source_docs, query, time_to_wait): # Add a sleep interval to avoid hitting the rate limit time.sleep(time_to_wait) # Adjust the sleep time as needed # Step 3: Extract attributes and total sentences for each query logging.info(f"Extracting attributes through validation LLM") attributes, total_sentences = extract_attributes(val_llm, query, source_docs, response) logging.info(f"Extracted attributes successfully") # Step 4 : Call the get metrics calculate metrics metrics = get_metrics(attributes, total_sentences) return attributes, metrics