from generator.create_prompt import create_prompt from generator.document_utils import apply_sentence_keys_documents, apply_sentence_keys_response # Function to extract attributes def extract_attributes(val_llm, question, relevant_docs, response): # Format documents into a string by accessing the `page_content` attribute of each Document #formatted_documents = "\n".join([f"Doc {i+1}: {doc.page_content}" for i, doc in enumerate(relevant_docs)]) formatted_documents = apply_sentence_keys_documents(relevant_docs) formatted_responses = apply_sentence_keys_response(response) #print(f"Formatted documents : {formatted_documents}") # Print the number of sentences in each document '''for i, doc in enumerate(formatted_documents): num_sentences = len(doc) print(f"Document {i} has {num_sentences} sentences.")''' # Calculate the total number of sentences from formatted_documents total_sentences = sum(len(doc) for doc in formatted_documents) #print(f"Total number of sentences {total_sentences}") attribute_prompt = create_prompt(formatted_documents, question, formatted_responses) # Instead of using BaseMessage, pass the formatted prompt directly to invoke result = val_llm.invoke(attribute_prompt) return result, total_sentences