import json import logging def compute_metrics(attributes, total_sentences): # Extract relevant information from attributes all_relevant_sentence_keys = attributes.get("all_relevant_sentence_keys", []) all_utilized_sentence_keys = attributes.get("all_utilized_sentence_keys", []) sentence_support_information = attributes.get("sentence_support_information", []) # Compute Context Relevance context_relevance = len(all_relevant_sentence_keys) / total_sentences if total_sentences else 0 # Compute Context Utilization context_utilization = len(all_utilized_sentence_keys) / total_sentences if total_sentences else 0 # Compute Completeness score Ri = set(all_relevant_sentence_keys) Ui = set(all_utilized_sentence_keys) completeness_score = len(Ri & Ui) / len(Ri) if len(Ri) else 0 # Compute Adherence adherence = all(info.get("fully_supported", False) for info in sentence_support_information) #adherence = 1 if all(info.get("fully_supported", False) for info in sentence_support_information) else 0 return { "Context Relevance": context_relevance, "Context Utilization": context_utilization, "Completeness Score": completeness_score, "Adherence": adherence } def get_metrics(attributes, total_sentences): if attributes.content: try: result_content = attributes.content # Access the content attribute # Extract the JSON part from the result_content json_start = result_content.find("{") json_end = result_content.rfind("}") + 1 json_str = result_content[json_start:json_end] result_json = json.loads(json_str) # Compute metrics using the extracted attributes metrics = compute_metrics(result_json, total_sentences) logging.info(metrics) return metrics except json.JSONDecodeError as e: logging.error(f"JSONDecodeError: {e}") def get_attributes_text(attributes): try: result_content = attributes.content # Access the content attribute # Extract the JSON part from the result_content json_start = result_content.find("{") json_end = result_content.rfind("}") + 1 json_str = result_content[json_start:json_end] result_json = json.loads(json_str) # Extract the required fields from json relevance_explanation = result_json.get("relevance_explanation", "N/A") all_relevant_sentence_keys = result_json.get("all_relevant_sentence_keys", []) overall_supported_explanation = result_json.get("overall_supported_explanation", "N/A") overall_supported = result_json.get("overall_supported", "N/A") sentence_support_information = result_json.get("sentence_support_information", []) all_utilized_sentence_keys = result_json.get("all_utilized_sentence_keys", []) # Format the metrics for display attributes_text = "Attributes:\n" attributes_text = f"### Relevance Explanation:\n{relevance_explanation}\n\n" attributes_text += f"### All Relevant Sentence Keys:\n{', '.join(all_relevant_sentence_keys)}\n\n" attributes_text += f"### Overall Supported Explanation:\n{overall_supported_explanation}\n\n" attributes_text += f"### Overall Supported:\n{overall_supported}\n\n" attributes_text += "### Sentence Support Information:\n" for info in sentence_support_information: attributes_text += f"- Response Sentence Key: {info.get('response_sentence_key', 'N/A')}\n" attributes_text += f" Explanation: {info.get('explanation', 'N/A')}\n" attributes_text += f" Supporting Sentence Keys: {', '.join(info.get('supporting_sentence_keys', []))}\n" attributes_text += f" Fully Supported: {info.get('fully_supported', 'N/A')}\n" attributes_text += f"\n### All Utilized Sentence Keys:\n{', '.join(all_utilized_sentence_keys)}" return attributes_text except Exception as e: logging.error(f"Error extracting attributes: {e}") return f"An error occurred while extracting attributes: {e}"