Upload 3 files
Browse files
app.py
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import logging
|
| 3 |
-
import threading
|
| 4 |
import time
|
| 5 |
from generator.compute_metrics import get_attributes_text
|
| 6 |
from generator.generate_metrics import generate_metrics, retrieve_and_generate_response
|
| 7 |
from config import AppConfig, ConfigConstants
|
| 8 |
from generator.initialize_llm import initialize_generation_llm, initialize_validation_llm
|
| 9 |
-
from generator.document_utils import get_logs, initialize_logging
|
|
|
|
| 10 |
|
| 11 |
def launch_gradio(config : AppConfig):
|
| 12 |
"""
|
|
@@ -14,6 +14,9 @@ def launch_gradio(config : AppConfig):
|
|
| 14 |
"""
|
| 15 |
initialize_logging()
|
| 16 |
|
|
|
|
|
|
|
|
|
|
| 17 |
def update_logs_periodically():
|
| 18 |
while True:
|
| 19 |
time.sleep(2) # Wait for 2 seconds
|
|
@@ -21,6 +24,10 @@ def launch_gradio(config : AppConfig):
|
|
| 21 |
|
| 22 |
def answer_question(query, state):
|
| 23 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
# Generate response using the passed objects
|
| 25 |
response, source_docs = retrieve_and_generate_response(config.gen_llm, config.vector_store, query)
|
| 26 |
|
|
@@ -29,7 +36,7 @@ def launch_gradio(config : AppConfig):
|
|
| 29 |
state["response"] = response
|
| 30 |
state["source_docs"] = source_docs
|
| 31 |
|
| 32 |
-
response_text = f"Response: {response}\n\n"
|
| 33 |
return response_text, state
|
| 34 |
except Exception as e:
|
| 35 |
logging.error(f"Error processing query: {e}")
|
|
@@ -49,7 +56,7 @@ def launch_gradio(config : AppConfig):
|
|
| 49 |
|
| 50 |
attributes_text = get_attributes_text(attributes)
|
| 51 |
|
| 52 |
-
metrics_text = "
|
| 53 |
for key, value in metrics.items():
|
| 54 |
if key != 'response':
|
| 55 |
metrics_text += f"{key}: {value}\n"
|
|
@@ -70,11 +77,14 @@ def launch_gradio(config : AppConfig):
|
|
| 70 |
return get_updated_model_info()
|
| 71 |
|
| 72 |
def get_updated_model_info():
|
|
|
|
| 73 |
"""Generate and return the updated model information string."""
|
| 74 |
return (
|
| 75 |
f"Embedding Model: {ConfigConstants.EMBEDDING_MODEL_NAME}\n"
|
| 76 |
f"Generation LLM: {config.gen_llm.name if hasattr(config.gen_llm, 'name') else 'Unknown'}\n"
|
|
|
|
| 77 |
f"Validation LLM: {config.val_llm.name if hasattr(config.val_llm, 'name') else 'Unknown'}\n"
|
|
|
|
| 78 |
)
|
| 79 |
|
| 80 |
# Wrappers for event listeners
|
|
@@ -84,50 +94,125 @@ def launch_gradio(config : AppConfig):
|
|
| 84 |
def reinitialize_val_llm(val_llm_name):
|
| 85 |
return reinitialize_llm("validation", val_llm_name)
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
# Define Gradio Blocks layout
|
| 88 |
with gr.Blocks() as interface:
|
| 89 |
interface.title = "Real Time RAG Pipeline Q&A"
|
| 90 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
with gr.Row():
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
-
#
|
| 115 |
-
state = gr.State(value={"query": "","response": "", "source_docs": {}})
|
| 116 |
-
gr.Markdown("Ask a question and get a response with metrics calculated from the RAG pipeline.") # Description
|
| 117 |
with gr.Row():
|
| 118 |
-
|
| 119 |
-
with gr.Row():
|
| 120 |
-
submit_button = gr.Button("Submit", variant="primary", scale = 0) # Submit button
|
| 121 |
-
clear_query_button = gr.Button("Clear", scale = 0) # Clear button
|
| 122 |
-
with gr.Row():
|
| 123 |
-
answer_output = gr.Textbox(label="Response", placeholder="Response will appear here")
|
| 124 |
|
| 125 |
with gr.Row():
|
| 126 |
compute_metrics_button = gr.Button("Compute metrics", variant="primary" , scale = 0)
|
| 127 |
attr_output = gr.Textbox(label="Attributes", placeholder="Attributes will appear here")
|
| 128 |
metrics_output = gr.Textbox(label="Metrics", placeholder="Metrics will appear here")
|
| 129 |
|
| 130 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
# Attach event listeners to update model info on change
|
| 132 |
new_gen_llm_input.change(reinitialize_gen_llm, inputs=new_gen_llm_input, outputs=model_info_display)
|
| 133 |
new_val_llm_input.change(reinitialize_val_llm, inputs=new_val_llm_input, outputs=model_info_display)
|
|
@@ -146,8 +231,9 @@ def launch_gradio(config : AppConfig):
|
|
| 146 |
)
|
| 147 |
|
| 148 |
# Section to display logs
|
| 149 |
-
with gr.
|
| 150 |
-
|
|
|
|
| 151 |
|
| 152 |
# Update UI when logs_state changes
|
| 153 |
interface.queue()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import logging
|
|
|
|
| 3 |
import time
|
| 4 |
from generator.compute_metrics import get_attributes_text
|
| 5 |
from generator.generate_metrics import generate_metrics, retrieve_and_generate_response
|
| 6 |
from config import AppConfig, ConfigConstants
|
| 7 |
from generator.initialize_llm import initialize_generation_llm, initialize_validation_llm
|
| 8 |
+
from generator.document_utils import get_logs, initialize_logging
|
| 9 |
+
from retriever.load_selected_datasets import load_selected_datasets
|
| 10 |
|
| 11 |
def launch_gradio(config : AppConfig):
|
| 12 |
"""
|
|
|
|
| 14 |
"""
|
| 15 |
initialize_logging()
|
| 16 |
|
| 17 |
+
# **🔹 Always get the latest loaded datasets**
|
| 18 |
+
config.detect_loaded_datasets()
|
| 19 |
+
|
| 20 |
def update_logs_periodically():
|
| 21 |
while True:
|
| 22 |
time.sleep(2) # Wait for 2 seconds
|
|
|
|
| 24 |
|
| 25 |
def answer_question(query, state):
|
| 26 |
try:
|
| 27 |
+
# Ensure vector store is updated before use
|
| 28 |
+
if config.vector_store is None:
|
| 29 |
+
return "Please load a dataset first.", state
|
| 30 |
+
|
| 31 |
# Generate response using the passed objects
|
| 32 |
response, source_docs = retrieve_and_generate_response(config.gen_llm, config.vector_store, query)
|
| 33 |
|
|
|
|
| 36 |
state["response"] = response
|
| 37 |
state["source_docs"] = source_docs
|
| 38 |
|
| 39 |
+
response_text = f"Response from Model : {response}\n\n"
|
| 40 |
return response_text, state
|
| 41 |
except Exception as e:
|
| 42 |
logging.error(f"Error processing query: {e}")
|
|
|
|
| 56 |
|
| 57 |
attributes_text = get_attributes_text(attributes)
|
| 58 |
|
| 59 |
+
metrics_text = ""
|
| 60 |
for key, value in metrics.items():
|
| 61 |
if key != 'response':
|
| 62 |
metrics_text += f"{key}: {value}\n"
|
|
|
|
| 77 |
return get_updated_model_info()
|
| 78 |
|
| 79 |
def get_updated_model_info():
|
| 80 |
+
loaded_datasets_str = ", ".join(config.loaded_datasets) if config.loaded_datasets else "None"
|
| 81 |
"""Generate and return the updated model information string."""
|
| 82 |
return (
|
| 83 |
f"Embedding Model: {ConfigConstants.EMBEDDING_MODEL_NAME}\n"
|
| 84 |
f"Generation LLM: {config.gen_llm.name if hasattr(config.gen_llm, 'name') else 'Unknown'}\n"
|
| 85 |
+
f"Re-ranking LLM: {ConfigConstants.RE_RANKER_MODEL_NAME}\n"
|
| 86 |
f"Validation LLM: {config.val_llm.name if hasattr(config.val_llm, 'name') else 'Unknown'}\n"
|
| 87 |
+
f"Loaded Datasets: {loaded_datasets_str}\n"
|
| 88 |
)
|
| 89 |
|
| 90 |
# Wrappers for event listeners
|
|
|
|
| 94 |
def reinitialize_val_llm(val_llm_name):
|
| 95 |
return reinitialize_llm("validation", val_llm_name)
|
| 96 |
|
| 97 |
+
# Function to update query input when a question is selected from the dropdown
|
| 98 |
+
def update_query_input(selected_question):
|
| 99 |
+
return selected_question
|
| 100 |
+
|
| 101 |
# Define Gradio Blocks layout
|
| 102 |
with gr.Blocks() as interface:
|
| 103 |
interface.title = "Real Time RAG Pipeline Q&A"
|
| 104 |
+
gr.Markdown("""
|
| 105 |
+
# Real Time RAG Pipeline Q&A
|
| 106 |
+
The **Retrieval-Augmented Generation (RAG) Pipeline** combines retrieval-based and generative AI models to provide accurate and context-aware answers to your questions.
|
| 107 |
+
It retrieves relevant documents from a dataset (e.g., COVIDQA, TechQA, FinQA) and uses a generative model to synthesize a response.
|
| 108 |
+
Metrics are computed to evaluate the quality of the response and the retrieval process.
|
| 109 |
+
""")
|
| 110 |
+
# Model Configuration
|
| 111 |
+
with gr.Accordion("System Information", open=False):
|
| 112 |
+
with gr.Accordion("DataSet", open=False):
|
| 113 |
+
with gr.Row():
|
| 114 |
+
dataset_selector = gr.CheckboxGroup(ConfigConstants.DATA_SET_NAMES, label="Select Datasets to Load")
|
| 115 |
+
load_button = gr.Button("Load", scale= 0)
|
| 116 |
+
|
| 117 |
+
with gr.Row():
|
| 118 |
+
# Column for Generation Model Dropdown
|
| 119 |
+
with gr.Column(scale=1):
|
| 120 |
+
new_gen_llm_input = gr.Dropdown(
|
| 121 |
+
label="Generation Model",
|
| 122 |
+
choices=ConfigConstants.GENERATION_MODELS,
|
| 123 |
+
value=ConfigConstants.GENERATION_MODELS[0] if ConfigConstants.GENERATION_MODELS else None,
|
| 124 |
+
interactive=True,
|
| 125 |
+
info="Select the generative model for response generation."
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# Column for Validation Model Dropdown
|
| 129 |
+
with gr.Column(scale=1):
|
| 130 |
+
new_val_llm_input = gr.Dropdown(
|
| 131 |
+
label="Validation Model",
|
| 132 |
+
choices=ConfigConstants.VALIDATION_MODELS,
|
| 133 |
+
value=ConfigConstants.VALIDATION_MODELS[0] if ConfigConstants.VALIDATION_MODELS else None,
|
| 134 |
+
interactive=True,
|
| 135 |
+
info="Select the model for validating the response quality."
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# Column for Model Information
|
| 139 |
+
with gr.Column(scale=2):
|
| 140 |
+
model_info_display = gr.Textbox(
|
| 141 |
+
value=get_updated_model_info(), # Use the helper function
|
| 142 |
+
label="Model Configuration",
|
| 143 |
+
interactive=False, # Read-only textbox
|
| 144 |
+
lines=5
|
| 145 |
+
)
|
| 146 |
|
| 147 |
+
# Query Section
|
| 148 |
+
gr.Markdown("Ask a question and get a response with metrics calculated from the RAG pipeline.")
|
| 149 |
+
all_questions = [
|
| 150 |
+
"When was the first case of COVID-19 identified?",
|
| 151 |
+
"What are the ages of the patients in this study?",
|
| 152 |
+
"Is one party required to deposit its source code into escrow with a third party, which can be released to the counterparty upon the occurrence of certain events (bankruptcy, insolvency, etc.)?",
|
| 153 |
+
"Explain the concept of blockchain.",
|
| 154 |
+
"What is the capital of France?",
|
| 155 |
+
"Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK??",
|
| 156 |
+
"How does a vaccine work?",
|
| 157 |
+
"What is the difference between RNA and DNA?",
|
| 158 |
+
"What are the risk factors for heart disease?",
|
| 159 |
+
"What is the role of insulin in the body?",
|
| 160 |
+
# Add more questions as needed
|
| 161 |
+
]
|
| 162 |
+
|
| 163 |
+
# Subset of questions to display as examples
|
| 164 |
+
example_questions = [
|
| 165 |
+
"When was the first case of COVID-19 identified?",
|
| 166 |
+
"What are the ages of the patients in this study?",
|
| 167 |
+
"What is the Hepatitis C virus?",
|
| 168 |
+
"Explain the concept of blockchain.",
|
| 169 |
+
"What is the capital of France?"
|
| 170 |
+
]
|
| 171 |
with gr.Row():
|
| 172 |
+
with gr.Column():
|
| 173 |
+
with gr.Row():
|
| 174 |
+
query_input = gr.Textbox(
|
| 175 |
+
label="Ask a question ",
|
| 176 |
+
placeholder="Type your query here or select from examples/dropdown",
|
| 177 |
+
lines=2
|
| 178 |
+
)
|
| 179 |
+
with gr.Row():
|
| 180 |
+
submit_button = gr.Button("Submit", variant="primary", scale=0)
|
| 181 |
+
clear_query_button = gr.Button("Clear", scale=0)
|
| 182 |
+
with gr.Column():
|
| 183 |
+
gr.Examples(
|
| 184 |
+
examples=example_questions, # Make sure the variable name matches
|
| 185 |
+
inputs=query_input,
|
| 186 |
+
label="Try these examples:"
|
| 187 |
+
)
|
| 188 |
+
question_dropdown = gr.Dropdown(
|
| 189 |
+
label="",
|
| 190 |
+
choices=all_questions,
|
| 191 |
+
interactive=True,
|
| 192 |
+
info="Choose a question from the dropdown to populate the query box."
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
# Attach event listener to dropdown
|
| 196 |
+
question_dropdown.change(
|
| 197 |
+
fn=update_query_input,
|
| 198 |
+
inputs=question_dropdown,
|
| 199 |
+
outputs=query_input
|
| 200 |
+
)
|
| 201 |
|
| 202 |
+
# Response and Metrics
|
|
|
|
|
|
|
| 203 |
with gr.Row():
|
| 204 |
+
answer_output = gr.Textbox(label="Response", placeholder="Response will appear here", lines=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
with gr.Row():
|
| 207 |
compute_metrics_button = gr.Button("Compute metrics", variant="primary" , scale = 0)
|
| 208 |
attr_output = gr.Textbox(label="Attributes", placeholder="Attributes will appear here")
|
| 209 |
metrics_output = gr.Textbox(label="Metrics", placeholder="Metrics will appear here")
|
| 210 |
|
| 211 |
+
# State to store response and source documents
|
| 212 |
+
state = gr.State(value={"query": "","response": "", "source_docs": {}})
|
| 213 |
+
|
| 214 |
+
# Pass config to update vector store
|
| 215 |
+
load_button.click(lambda datasets: (load_selected_datasets(datasets, config), get_updated_model_info()), inputs=dataset_selector)
|
| 216 |
# Attach event listeners to update model info on change
|
| 217 |
new_gen_llm_input.change(reinitialize_gen_llm, inputs=new_gen_llm_input, outputs=model_info_display)
|
| 218 |
new_val_llm_input.change(reinitialize_val_llm, inputs=new_val_llm_input, outputs=model_info_display)
|
|
|
|
| 231 |
)
|
| 232 |
|
| 233 |
# Section to display logs
|
| 234 |
+
with gr.Accordion("View Live Logs", open=False):
|
| 235 |
+
with gr.Row():
|
| 236 |
+
log_section = gr.Textbox(label="Logs", interactive=False, visible=True, lines=10 , every=2) # Log section
|
| 237 |
|
| 238 |
# Update UI when logs_state changes
|
| 239 |
interface.queue()
|
config.py
CHANGED
|
@@ -1,18 +1,36 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
class ConfigConstants:
|
| 5 |
+
# Constants related to datasets and models
|
| 6 |
+
DATA_SET_PATH= '/persistent/local_datasets'
|
| 7 |
+
DATA_SET_NAMES = ['covidqa', 'cuad', 'techqa','delucionqa', 'emanual', 'expertqa', 'finqa', 'hagrid', 'hotpotqa', 'msmarco', 'pubmedqa', 'tatqa']
|
| 8 |
+
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-MiniLM-L3-v2"
|
| 9 |
+
RE_RANKER_MODEL_NAME = 'cross-encoder/ms-marco-electra-base'
|
| 10 |
+
GENERATION_MODEL_NAME = 'mixtral-8x7b-32768'
|
| 11 |
+
VALIDATION_MODEL_NAME = 'llama3-70b-8192'
|
| 12 |
+
GENERATION_MODELS = ["llama3-8b-8192", "qwen-2.5-32b", "mixtral-8x7b-32768", "gemma2-9b-it" ]
|
| 13 |
+
VALIDATION_MODELS = ["llama3-70b-8192", "deepseek-r1-distill-llama-70b" ]
|
| 14 |
+
DEFAULT_CHUNK_SIZE = 1000
|
| 15 |
+
CHUNK_OVERLAP = 200
|
| 16 |
+
|
| 17 |
+
class AppConfig:
|
| 18 |
+
def __init__(self, vector_store, gen_llm, val_llm):
|
| 19 |
+
self.vector_store = vector_store
|
| 20 |
+
self.gen_llm = gen_llm
|
| 21 |
+
self.val_llm = val_llm
|
| 22 |
+
self.loaded_datasets = self.detect_loaded_datasets() # Auto-detect loaded datasets
|
| 23 |
+
|
| 24 |
+
@staticmethod
|
| 25 |
+
def detect_loaded_datasets():
|
| 26 |
+
print('Calling detect_loaded_datasets')
|
| 27 |
+
"""Check which datasets are already stored locally."""
|
| 28 |
+
local_path = ConfigConstants.DATA_SET_PATH
|
| 29 |
+
if not os.path.exists(local_path):
|
| 30 |
+
return set()
|
| 31 |
+
|
| 32 |
+
dataset_files = os.listdir(local_path)
|
| 33 |
+
loaded_datasets = {
|
| 34 |
+
file.replace("_test.pkl", "") for file in dataset_files if file.endswith("_test.pkl")
|
| 35 |
+
}
|
| 36 |
+
return loaded_datasets
|
main.py
CHANGED
|
@@ -1,64 +1,34 @@
|
|
| 1 |
-
import logging
|
| 2 |
-
from config import AppConfig, ConfigConstants
|
| 3 |
-
from
|
| 4 |
-
from
|
| 5 |
-
from
|
| 6 |
-
from
|
| 7 |
-
from
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
#
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
# Access individual datasets
|
| 36 |
-
#for name, dataset in datasets.items():
|
| 37 |
-
#logging.info(f"Loaded {name} with {dataset.num_rows} rows")
|
| 38 |
-
|
| 39 |
-
# Logging final count
|
| 40 |
-
logging.info(f"Total chunked documents: {len(all_chunked_documents)}")
|
| 41 |
-
|
| 42 |
-
# Embed the documents
|
| 43 |
-
vector_store = embed_documents(all_chunked_documents)
|
| 44 |
-
logging.info("Documents embedded")
|
| 45 |
-
|
| 46 |
-
# Initialize the Generation LLM
|
| 47 |
-
gen_llm = initialize_generation_llm(ConfigConstants.GENERATION_MODEL_NAME)
|
| 48 |
-
|
| 49 |
-
# Initialize the Validation LLM
|
| 50 |
-
val_llm = initialize_validation_llm(ConfigConstants.VALIDATION_MODEL_NAME)
|
| 51 |
-
|
| 52 |
-
#Compute RMSE and AUC-ROC for entire dataset
|
| 53 |
-
#Enable below code for calculation
|
| 54 |
-
#data_set_name = 'covidqa'
|
| 55 |
-
#compute_rmse_auc_roc_metrics(gen_llm, val_llm, datasets[data_set_name], vector_store, 10)
|
| 56 |
-
|
| 57 |
-
# Launch the Gradio app
|
| 58 |
-
config = AppConfig(vector_store= vector_store, gen_llm = gen_llm, val_llm = val_llm)
|
| 59 |
-
launch_gradio(config)
|
| 60 |
-
|
| 61 |
-
logging.info("Finished!!!")
|
| 62 |
-
|
| 63 |
-
if __name__ == "__main__":
|
| 64 |
main()
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from config import AppConfig, ConfigConstants
|
| 3 |
+
from generator.compute_rmse_auc_roc_metrics import compute_rmse_auc_roc_metrics
|
| 4 |
+
from retriever.load_selected_datasets import load_selected_datasets
|
| 5 |
+
from generator.initialize_llm import initialize_generation_llm
|
| 6 |
+
from generator.initialize_llm import initialize_validation_llm
|
| 7 |
+
from app import launch_gradio
|
| 8 |
+
|
| 9 |
+
# Configure logging
|
| 10 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 11 |
+
|
| 12 |
+
def main():
|
| 13 |
+
logging.info("Starting the RAG pipeline")
|
| 14 |
+
|
| 15 |
+
# Initialize the Generation LLM
|
| 16 |
+
gen_llm = initialize_generation_llm(ConfigConstants.GENERATION_MODEL_NAME)
|
| 17 |
+
|
| 18 |
+
# Initialize the Validation LLM
|
| 19 |
+
val_llm = initialize_validation_llm(ConfigConstants.VALIDATION_MODEL_NAME)
|
| 20 |
+
|
| 21 |
+
#Compute RMSE and AUC-ROC for entire dataset
|
| 22 |
+
#Enable below code for calculation
|
| 23 |
+
#data_set_name = 'covidqa'
|
| 24 |
+
#compute_rmse_auc_roc_metrics(gen_llm, val_llm, datasets[data_set_name], vector_store, 10)
|
| 25 |
+
|
| 26 |
+
# Launch the Gradio app
|
| 27 |
+
config = AppConfig(vector_store = None, gen_llm = gen_llm, val_llm = val_llm)
|
| 28 |
+
load_selected_datasets(['covidqa'], config)
|
| 29 |
+
launch_gradio(config)
|
| 30 |
+
|
| 31 |
+
logging.info("Finished!!!")
|
| 32 |
+
|
| 33 |
+
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
main()
|