Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- generator/document_utils.py +56 -35
- generator/generate_metrics.py +38 -38
generator/document_utils.py
CHANGED
@@ -1,35 +1,56 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
logs = []
|
5 |
+
class Document:
|
6 |
+
def __init__(self, metadata, page_content):
|
7 |
+
self.metadata = metadata
|
8 |
+
self.page_content = page_content
|
9 |
+
|
10 |
+
def apply_sentence_keys_documents(relevant_docs: List[Document]):
|
11 |
+
result = []
|
12 |
+
'''for i, doc in enumerate(relevant_docs):
|
13 |
+
doc_id = str(i)
|
14 |
+
title_passage = doc.page_content.split('\nPassage: ')
|
15 |
+
title = title_passage[0]
|
16 |
+
passages = title_passage[1].split('. ')
|
17 |
+
|
18 |
+
doc_result = []
|
19 |
+
doc_result.append([f"{doc_id}a", title])
|
20 |
+
|
21 |
+
for j, passage in enumerate(passages):
|
22 |
+
doc_result.append([f"{doc_id}{chr(98 + j)}", passage])
|
23 |
+
|
24 |
+
result.append(doc_result)'''
|
25 |
+
|
26 |
+
for relevant_doc_index, relevant_doc in enumerate(relevant_docs):
|
27 |
+
sentences = []
|
28 |
+
for sentence_index, sentence in enumerate(relevant_doc.page_content.split(".")):
|
29 |
+
sentences.append([str(relevant_doc_index)+chr(97 + sentence_index), sentence])
|
30 |
+
result.append(sentences)
|
31 |
+
|
32 |
+
return result
|
33 |
+
|
34 |
+
def apply_sentence_keys_response(input_string):
|
35 |
+
sentences = input_string.split('. ')
|
36 |
+
result = [[chr(97 + i), sentence] for i, sentence in enumerate(sentences)]
|
37 |
+
return result
|
38 |
+
|
39 |
+
def initialize_logging():
|
40 |
+
logger = logging.getLogger()
|
41 |
+
logger.setLevel(logging.INFO)
|
42 |
+
|
43 |
+
# Custom log handler to capture logs and add them to the logs list
|
44 |
+
class LogHandler(logging.Handler):
|
45 |
+
def emit(self, record):
|
46 |
+
log_entry = self.format(record)
|
47 |
+
logs.append(log_entry)
|
48 |
+
|
49 |
+
# Add custom log handler to the logger
|
50 |
+
log_handler = LogHandler()
|
51 |
+
log_handler.setFormatter(logging.Formatter('%(asctime)s - %(message)s'))
|
52 |
+
logger.addHandler(log_handler)
|
53 |
+
|
54 |
+
def get_logs():
|
55 |
+
"""Retrieve logs for display."""
|
56 |
+
return "\n".join(logs[-100:]) # Only show the last 50 logs for example
|
generator/generate_metrics.py
CHANGED
@@ -1,39 +1,39 @@
|
|
1 |
-
import logging
|
2 |
-
import time
|
3 |
-
from generator.generate_response import generate_response
|
4 |
-
from retriever.retrieve_documents import retrieve_top_k_documents
|
5 |
-
from generator.compute_metrics import get_metrics
|
6 |
-
from generator.extract_attributes import extract_attributes
|
7 |
-
|
8 |
-
def retrieve_and_generate_response(gen_llm, vector_store, query):
|
9 |
-
logging.info(f'Query: {query}')
|
10 |
-
|
11 |
-
# Step 1: Retrieve relevant documents for given query
|
12 |
-
relevant_docs = retrieve_top_k_documents(vector_store, query, top_k=5)
|
13 |
-
#logging.info(f"Relevant documents retrieved :{len(relevant_docs)}")
|
14 |
-
|
15 |
-
# Log each retrieved document individually
|
16 |
-
#for i, doc in enumerate(relevant_docs):
|
17 |
-
#logging.info(f"Relevant document {i+1}: {doc} \n")
|
18 |
-
|
19 |
-
# Step 2: Generate a response using LLM
|
20 |
-
response, source_docs = generate_response(gen_llm, vector_store, query, relevant_docs)
|
21 |
-
|
22 |
-
logging.info(f"Response from LLM: {response}")
|
23 |
-
|
24 |
-
return response, source_docs
|
25 |
-
|
26 |
-
def generate_metrics(val_llm, response, source_docs, query, time_to_wait):
|
27 |
-
|
28 |
-
# Add a sleep interval to avoid hitting the rate limit
|
29 |
-
time.sleep(time_to_wait) # Adjust the sleep time as needed
|
30 |
-
|
31 |
-
# Step 3: Extract attributes and total sentences for each query
|
32 |
-
logging.info(f"Extracting attributes through validation LLM")
|
33 |
-
attributes, total_sentences = extract_attributes(val_llm, query, source_docs, response)
|
34 |
-
logging.info(f"Extracted attributes successfully")
|
35 |
-
|
36 |
-
# Step 4 : Call the get metrics calculate metrics
|
37 |
-
metrics = get_metrics(attributes, total_sentences)
|
38 |
-
|
39 |
return attributes, metrics
|
|
|
1 |
+
import logging
|
2 |
+
import time
|
3 |
+
from generator.generate_response import generate_response
|
4 |
+
from retriever.retrieve_documents import retrieve_top_k_documents
|
5 |
+
from generator.compute_metrics import get_metrics
|
6 |
+
from generator.extract_attributes import extract_attributes
|
7 |
+
|
8 |
+
def retrieve_and_generate_response(gen_llm, vector_store, query):
|
9 |
+
logging.info(f'Query: {query}')
|
10 |
+
|
11 |
+
# Step 1: Retrieve relevant documents for given query
|
12 |
+
relevant_docs = retrieve_top_k_documents(vector_store, query, top_k=5)
|
13 |
+
#logging.info(f"Relevant documents retrieved :{len(relevant_docs)}")
|
14 |
+
|
15 |
+
# Log each retrieved document individually
|
16 |
+
#for i, doc in enumerate(relevant_docs):
|
17 |
+
#logging.info(f"Relevant document {i+1}: {doc} \n")
|
18 |
+
|
19 |
+
# Step 2: Generate a response using LLM
|
20 |
+
response, source_docs = generate_response(gen_llm, vector_store, query, relevant_docs)
|
21 |
+
|
22 |
+
logging.info(f"Response from LLM ({gen_llm.name}): {response}")
|
23 |
+
|
24 |
+
return response, source_docs
|
25 |
+
|
26 |
+
def generate_metrics(val_llm, response, source_docs, query, time_to_wait):
|
27 |
+
|
28 |
+
# Add a sleep interval to avoid hitting the rate limit
|
29 |
+
time.sleep(time_to_wait) # Adjust the sleep time as needed
|
30 |
+
|
31 |
+
# Step 3: Extract attributes and total sentences for each query
|
32 |
+
logging.info(f"Extracting attributes through validation LLM")
|
33 |
+
attributes, total_sentences = extract_attributes(val_llm, query, source_docs, response)
|
34 |
+
logging.info(f"Extracted attributes successfully")
|
35 |
+
|
36 |
+
# Step 4 : Call the get metrics calculate metrics
|
37 |
+
metrics = get_metrics(attributes, total_sentences)
|
38 |
+
|
39 |
return attributes, metrics
|