Gourisankar Padihary
commited on
Commit
·
5b18a9a
1
Parent(s):
afa7a1b
Apply sentence keys
Browse files- generator/document_utils.py +29 -0
- generator/extract_attributes.py +5 -4
- main.py +2 -2
generator/document_utils.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
class Document:
|
4 |
+
def __init__(self, metadata, page_content):
|
5 |
+
self.metadata = metadata
|
6 |
+
self.page_content = page_content
|
7 |
+
|
8 |
+
def apply_sentence_keys_documents(relevant_docs: List[Document]):
|
9 |
+
result = []
|
10 |
+
for i, doc in enumerate(relevant_docs):
|
11 |
+
doc_id = str(i)
|
12 |
+
title_passage = doc.page_content.split('\nPassage: ')
|
13 |
+
title = title_passage[0]
|
14 |
+
passages = title_passage[1].split('. ')
|
15 |
+
|
16 |
+
doc_result = []
|
17 |
+
doc_result.append([f"{doc_id}a", title])
|
18 |
+
|
19 |
+
for j, passage in enumerate(passages):
|
20 |
+
doc_result.append([f"{doc_id}{chr(98 + j)}", passage])
|
21 |
+
|
22 |
+
result.append(doc_result)
|
23 |
+
|
24 |
+
return result
|
25 |
+
|
26 |
+
def apply_sentence_keys_response(input_string):
|
27 |
+
sentences = input_string.split('. ')
|
28 |
+
result = [[chr(97 + i), sentence] for i, sentence in enumerate(sentences)]
|
29 |
+
return result
|
generator/extract_attributes.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
import json
|
2 |
from generator.create_prompt import create_prompt
|
3 |
from generator.initialize_llm import initialize_llm
|
|
|
4 |
|
5 |
# Initialize the LLM
|
6 |
llm = initialize_llm()
|
@@ -8,10 +8,11 @@ llm = initialize_llm()
|
|
8 |
# Function to extract attributes
|
9 |
def extract_attributes(question, relevant_docs, response):
|
10 |
# Format documents into a string by accessing the `page_content` attribute of each Document
|
11 |
-
formatted_documents = "\n".join([f"Doc {i+1}: {doc.page_content}" for i, doc in enumerate(relevant_docs)])
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
attribute_prompt = create_prompt(formatted_documents, question, response)
|
15 |
|
16 |
# Instead of using BaseMessage, pass the formatted prompt directly to invoke
|
17 |
result = llm.invoke(attribute_prompt)
|
|
|
|
|
1 |
from generator.create_prompt import create_prompt
|
2 |
from generator.initialize_llm import initialize_llm
|
3 |
+
from generator.document_utils import Document, apply_sentence_keys_documents, apply_sentence_keys_response
|
4 |
|
5 |
# Initialize the LLM
|
6 |
llm = initialize_llm()
|
|
|
8 |
# Function to extract attributes
|
9 |
def extract_attributes(question, relevant_docs, response):
|
10 |
# Format documents into a string by accessing the `page_content` attribute of each Document
|
11 |
+
#formatted_documents = "\n".join([f"Doc {i+1}: {doc.page_content}" for i, doc in enumerate(relevant_docs)])
|
12 |
+
formatted_documents = apply_sentence_keys_documents(relevant_docs)
|
13 |
+
formatted_responses = apply_sentence_keys_response(response)
|
14 |
|
15 |
+
attribute_prompt = create_prompt(formatted_documents, question, formatted_responses)
|
|
|
16 |
|
17 |
# Instead of using BaseMessage, pass the formatted prompt directly to invoke
|
18 |
result = llm.invoke(attribute_prompt)
|
main.py
CHANGED
@@ -34,8 +34,8 @@ def main():
|
|
34 |
relevant_docs = retrieve_top_k_documents(vector_store, sample_question, top_k=5)
|
35 |
logging.info(f"Relevant documents retrieved :{len(relevant_docs)}")
|
36 |
# Log each retrieved document individually
|
37 |
-
for i, doc in enumerate(relevant_docs):
|
38 |
-
logging.info(f"Relevant document {i+1}: {doc} \n")
|
39 |
|
40 |
# Initialize the LLM
|
41 |
llm = initialize_llm()
|
|
|
34 |
relevant_docs = retrieve_top_k_documents(vector_store, sample_question, top_k=5)
|
35 |
logging.info(f"Relevant documents retrieved :{len(relevant_docs)}")
|
36 |
# Log each retrieved document individually
|
37 |
+
#for i, doc in enumerate(relevant_docs):
|
38 |
+
#logging.info(f"Relevant document {i+1}: {doc} \n")
|
39 |
|
40 |
# Initialize the LLM
|
41 |
llm = initialize_llm()
|