|
import gradio as gr
|
|
import logging
|
|
import threading
|
|
import time
|
|
from generator.compute_metrics import get_attributes_text
|
|
from generator.generate_metrics import generate_metrics, retrieve_and_generate_response
|
|
from config import AppConfig, ConfigConstants
|
|
from generator.initialize_llm import initialize_generation_llm, initialize_validation_llm
|
|
from generator.document_utils import get_logs, initialize_logging
|
|
|
|
def launch_gradio(config : AppConfig):
|
|
"""
|
|
Launch the Gradio app with pre-initialized objects.
|
|
"""
|
|
initialize_logging()
|
|
|
|
def update_logs_periodically():
|
|
while True:
|
|
time.sleep(2)
|
|
yield get_logs()
|
|
|
|
def answer_question(query, state):
|
|
try:
|
|
|
|
response, source_docs = retrieve_and_generate_response(config.gen_llm, config.vector_store, query)
|
|
|
|
|
|
state["query"] = query
|
|
state["response"] = response
|
|
state["source_docs"] = source_docs
|
|
|
|
response_text = f"Response: {response}\n\n"
|
|
return response_text, state
|
|
except Exception as e:
|
|
logging.error(f"Error processing query: {e}")
|
|
return f"An error occurred: {e}", state
|
|
|
|
def compute_metrics(state):
|
|
try:
|
|
logging.info(f"Computing metrics")
|
|
|
|
|
|
response = state.get("response", "")
|
|
source_docs = state.get("source_docs", {})
|
|
query = state.get("query", "")
|
|
|
|
|
|
attributes, metrics = generate_metrics(config.val_llm, response, source_docs, query, 1)
|
|
|
|
attributes_text = get_attributes_text(attributes)
|
|
|
|
metrics_text = "Metrics:\n"
|
|
for key, value in metrics.items():
|
|
if key != 'response':
|
|
metrics_text += f"{key}: {value}\n"
|
|
|
|
return attributes_text, metrics_text
|
|
except Exception as e:
|
|
logging.error(f"Error computing metrics: {e}")
|
|
return f"An error occurred: {e}", ""
|
|
|
|
def reinitialize_llm(model_type, model_name):
|
|
"""Reinitialize the specified LLM (generation or validation) and return updated model info."""
|
|
if model_name.strip():
|
|
if model_type == "generation":
|
|
config.gen_llm = initialize_generation_llm(model_name)
|
|
elif model_type == "validation":
|
|
config.val_llm = initialize_validation_llm(model_name)
|
|
|
|
return get_updated_model_info()
|
|
|
|
def get_updated_model_info():
|
|
"""Generate and return the updated model information string."""
|
|
return (
|
|
f"Embedding Model: {ConfigConstants.EMBEDDING_MODEL_NAME}\n"
|
|
f"Generation LLM: {config.gen_llm.name if hasattr(config.gen_llm, 'name') else 'Unknown'}\n"
|
|
f"Validation LLM: {config.val_llm.name if hasattr(config.val_llm, 'name') else 'Unknown'}\n"
|
|
)
|
|
|
|
|
|
def reinitialize_gen_llm(gen_llm_name):
|
|
return reinitialize_llm("generation", gen_llm_name)
|
|
|
|
def reinitialize_val_llm(val_llm_name):
|
|
return reinitialize_llm("validation", val_llm_name)
|
|
|
|
|
|
with gr.Blocks() as interface:
|
|
interface.title = "Real Time RAG Pipeline Q&A"
|
|
gr.Markdown("# Real Time RAG Pipeline Q&A")
|
|
|
|
|
|
with gr.Row():
|
|
new_gen_llm_input = gr.Dropdown(
|
|
label="Generation Model",
|
|
choices=ConfigConstants.GENERATION_MODELS,
|
|
value=ConfigConstants.GENERATION_MODELS[0] if ConfigConstants.GENERATION_MODELS else None,
|
|
interactive=True
|
|
)
|
|
|
|
new_val_llm_input = gr.Dropdown(
|
|
label="Validation Model",
|
|
choices=ConfigConstants.VALIDATION_MODELS,
|
|
value=ConfigConstants.VALIDATION_MODELS[0] if ConfigConstants.VALIDATION_MODELS else None,
|
|
interactive=True
|
|
)
|
|
|
|
model_info_display = gr.Textbox(
|
|
value=get_updated_model_info(),
|
|
label="System Information",
|
|
interactive=False
|
|
)
|
|
|
|
|
|
state = gr.State(value={"query": "","response": "", "source_docs": {}})
|
|
gr.Markdown("Ask a question and get a response with metrics calculated from the RAG pipeline.")
|
|
with gr.Row():
|
|
query_input = gr.Textbox(label="Ask a question", placeholder="Type your query here")
|
|
with gr.Row():
|
|
submit_button = gr.Button("Submit", variant="primary", scale = 0)
|
|
clear_query_button = gr.Button("Clear", scale = 0)
|
|
with gr.Row():
|
|
answer_output = gr.Textbox(label="Response", placeholder="Response will appear here")
|
|
|
|
with gr.Row():
|
|
compute_metrics_button = gr.Button("Compute metrics", variant="primary" , scale = 0)
|
|
attr_output = gr.Textbox(label="Attributes", placeholder="Attributes will appear here")
|
|
metrics_output = gr.Textbox(label="Metrics", placeholder="Metrics will appear here")
|
|
|
|
|
|
|
|
new_gen_llm_input.change(reinitialize_gen_llm, inputs=new_gen_llm_input, outputs=model_info_display)
|
|
new_val_llm_input.change(reinitialize_val_llm, inputs=new_val_llm_input, outputs=model_info_display)
|
|
|
|
|
|
submit_button.click(
|
|
fn=answer_question,
|
|
inputs=[query_input, state],
|
|
outputs=[answer_output, state]
|
|
)
|
|
clear_query_button.click(fn=lambda: "", outputs=[query_input])
|
|
compute_metrics_button.click(
|
|
fn=compute_metrics,
|
|
inputs=[state],
|
|
outputs=[attr_output, metrics_output]
|
|
)
|
|
|
|
|
|
with gr.Row():
|
|
log_section = gr.Textbox(label="Logs", interactive=False, visible=True, lines=10 , every=2)
|
|
|
|
|
|
interface.queue()
|
|
interface.load(update_logs_periodically, outputs=log_section)
|
|
|
|
interface.launch() |