gourisankar85's picture
Upload app.py
5ba6f5c verified
raw
history blame
6.93 kB
import gradio as gr
import logging
import threading
import time
from generator.compute_metrics import get_attributes_text
from generator.generate_metrics import generate_metrics, retrieve_and_generate_response
from config import AppConfig, ConfigConstants
from generator.initialize_llm import initialize_generation_llm, initialize_validation_llm
from generator.document_utils import get_logs, initialize_logging
def launch_gradio(config : AppConfig):
"""
Launch the Gradio app with pre-initialized objects.
"""
initialize_logging()
def update_logs_periodically():
while True:
time.sleep(2) # Wait for 2 seconds
yield get_logs()
def answer_question(query, state):
try:
# Generate response using the passed objects
response, source_docs = retrieve_and_generate_response(config.gen_llm, config.vector_store, query)
# Update state with the response and source documents
state["query"] = query
state["response"] = response
state["source_docs"] = source_docs
response_text = f"Response: {response}\n\n"
return response_text, state
except Exception as e:
logging.error(f"Error processing query: {e}")
return f"An error occurred: {e}", state
def compute_metrics(state):
try:
logging.info(f"Computing metrics")
# Retrieve response and source documents from state
response = state.get("response", "")
source_docs = state.get("source_docs", {})
query = state.get("query", "")
# Generate metrics using the passed objects
attributes, metrics = generate_metrics(config.val_llm, response, source_docs, query, 1)
attributes_text = get_attributes_text(attributes)
metrics_text = "Metrics:\n"
for key, value in metrics.items():
if key != 'response':
metrics_text += f"{key}: {value}\n"
return attributes_text, metrics_text
except Exception as e:
logging.error(f"Error computing metrics: {e}")
return f"An error occurred: {e}", ""
def reinitialize_llm(model_type, model_name):
"""Reinitialize the specified LLM (generation or validation) and return updated model info."""
if model_name.strip(): # Only update if input is not empty
if model_type == "generation":
config.gen_llm = initialize_generation_llm(model_name)
elif model_type == "validation":
config.val_llm = initialize_validation_llm(model_name)
return get_updated_model_info()
def get_updated_model_info():
"""Generate and return the updated model information string."""
return (
f"Embedding Model: {ConfigConstants.EMBEDDING_MODEL_NAME}\n"
f"Generation LLM: {config.gen_llm.name if hasattr(config.gen_llm, 'name') else 'Unknown'}\n"
f"Validation LLM: {config.val_llm.name if hasattr(config.val_llm, 'name') else 'Unknown'}\n"
)
# Wrappers for event listeners
def reinitialize_gen_llm(gen_llm_name):
return reinitialize_llm("generation", gen_llm_name)
def reinitialize_val_llm(val_llm_name):
return reinitialize_llm("validation", val_llm_name)
# Define Gradio Blocks layout
with gr.Blocks() as interface:
interface.title = "Real Time RAG Pipeline Q&A"
gr.Markdown("# Real Time RAG Pipeline Q&A") # Heading
# Textbox for new generation LLM name
with gr.Row():
new_gen_llm_input = gr.Dropdown(
label="Generation Model",
choices=ConfigConstants.GENERATION_MODELS, # Directly use the list
value=ConfigConstants.GENERATION_MODELS[0] if ConfigConstants.GENERATION_MODELS else None, # First value dynamically
interactive=True
)
new_val_llm_input = gr.Dropdown(
label="Validation Model",
choices=ConfigConstants.VALIDATION_MODELS, # Directly use the list
value=ConfigConstants.VALIDATION_MODELS[0] if ConfigConstants.VALIDATION_MODELS else None, # First value dynamically
interactive=True
)
model_info_display = gr.Textbox(
value=get_updated_model_info(), # Use the helper function
label="System Information",
interactive=False # Read-only textbox
)
# State to store response and source documents
state = gr.State(value={"query": "","response": "", "source_docs": {}})
gr.Markdown("Ask a question and get a response with metrics calculated from the RAG pipeline.") # Description
with gr.Row():
query_input = gr.Textbox(label="Ask a question", placeholder="Type your query here")
with gr.Row():
submit_button = gr.Button("Submit", variant="primary", scale = 0) # Submit button
clear_query_button = gr.Button("Clear", scale = 0) # Clear button
with gr.Row():
answer_output = gr.Textbox(label="Response", placeholder="Response will appear here")
with gr.Row():
compute_metrics_button = gr.Button("Compute metrics", variant="primary" , scale = 0)
attr_output = gr.Textbox(label="Attributes", placeholder="Attributes will appear here")
metrics_output = gr.Textbox(label="Metrics", placeholder="Metrics will appear here")
#with gr.Row():
# Attach event listeners to update model info on change
new_gen_llm_input.change(reinitialize_gen_llm, inputs=new_gen_llm_input, outputs=model_info_display)
new_val_llm_input.change(reinitialize_val_llm, inputs=new_val_llm_input, outputs=model_info_display)
# Define button actions
submit_button.click(
fn=answer_question,
inputs=[query_input, state],
outputs=[answer_output, state]
)
clear_query_button.click(fn=lambda: "", outputs=[query_input]) # Clear query input
compute_metrics_button.click(
fn=compute_metrics,
inputs=[state],
outputs=[attr_output, metrics_output]
)
# Section to display logs
with gr.Row():
log_section = gr.Textbox(label="Logs", interactive=False, visible=True, lines=10 , every=2) # Log section
# Update UI when logs_state changes
interface.queue()
interface.load(update_logs_periodically, outputs=log_section)
interface.launch()