realtime-rag-pipeline / generator /generate_metrics.py
Gourisankar Padihary
Code rafactored
e384879
raw
history blame
1.14 kB
import logging
from generator.generate_response import generate_response
from retriever.retrieve_documents import retrieve_top_k_documents
from generator.compute_metrics import get_metrics
from generator.extract_attributes import extract_attributes
def generate_metrics(llm, vector_store, query):
logging.info(f'Query: {query}')
# Step 1: Retrieve relevant documents for given query
relevant_docs = retrieve_top_k_documents(vector_store, query, top_k=5)
logging.info(f"Relevant documents retrieved :{len(relevant_docs)}")
# Log each retrieved document individually
#for i, doc in enumerate(relevant_docs):
#logging.info(f"Relevant document {i+1}: {doc} \n")
# Step 2: Generate a response using LLM
response, source_docs = generate_response(llm, vector_store, query, relevant_docs)
logging.info(f"Response from LLM: {response}")
# Step 3: Extract attributes and total sentences for each query
attributes, total_sentences = extract_attributes(query, source_docs, response)
# Call the get_metrics
metrics = get_metrics(attributes, total_sentences)
return metrics