realtime-rag-pipeline / generator /generate_response.py
gourisankar85's picture
Upload 7 files
34d3a67 verified
raw
history blame
664 Bytes
from langchain.chains import RetrievalQA
def generate_response(llm, vector_store, question, relevant_docs):
# Create a retrieval-based question-answering chain using the relevant documents
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=vector_store.as_retriever(),
return_source_documents=True
)
try:
result = qa_chain.invoke(question, documents=relevant_docs)
response = result['result']
source_docs = result['source_documents']
return response, source_docs
except Exception as e:
print(f"Error during QA chain invocation: {e}")
raise e