Spaces:
Sleeping
Sleeping
from generator.create_prompt import create_prompt | |
from generator.document_utils import apply_sentence_keys_documents, apply_sentence_keys_response | |
# Function to extract attributes | |
def extract_attributes(val_llm, question, relevant_docs, response): | |
# Format documents into a string by accessing the `page_content` attribute of each Document | |
#formatted_documents = "\n".join([f"Doc {i+1}: {doc.page_content}" for i, doc in enumerate(relevant_docs)]) | |
formatted_documents = apply_sentence_keys_documents(relevant_docs) | |
formatted_responses = apply_sentence_keys_response(response) | |
#print(f"Formatted documents : {formatted_documents}") | |
# Print the number of sentences in each document | |
'''for i, doc in enumerate(formatted_documents): | |
num_sentences = len(doc) | |
print(f"Document {i} has {num_sentences} sentences.")''' | |
# Calculate the total number of sentences from formatted_documents | |
total_sentences = sum(len(doc) for doc in formatted_documents) | |
#print(f"Total number of sentences {total_sentences}") | |
attribute_prompt = create_prompt(formatted_documents, question, formatted_responses) | |
# Instead of using BaseMessage, pass the formatted prompt directly to invoke | |
result = val_llm.invoke(attribute_prompt) | |
return result, total_sentences |