realtime-rag-pipeline / generator /generate_response.py
Gourisankar Padihary
Initial commit
026aeba
raw
history blame
393 Bytes
from langchain.chains import RetrievalQA
def generate_response(llm, vector_store, question):
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=vector_store.as_retriever(),
return_source_documents=True
)
result = qa_chain.invoke(question)
response = result['result']
source_docs = result['source_documents']
return response, source_docs