File size: 350 Bytes
bd69eee |
1 2 3 4 5 6 7 8 |
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
def embed_documents(documents):
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vector_store = FAISS.from_texts([doc['text'] for doc in documents], embedding_model)
return vector_store
|