Spaces:
Sleeping
Sleeping
Commit
·
a41fa29
1
Parent(s):
392d4d4
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import cv2
|
| 3 |
+
import requests
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
from ultralytics import YOLO
|
| 7 |
+
|
| 8 |
+
file_urls = [
|
| 9 |
+
'https://www.dropbox.com/s/b5g97xo901zb3ds/pothole_example.jpg?dl=1',
|
| 10 |
+
'https://www.dropbox.com/s/86uxlxxlm1iaexa/pothole_screenshot.png?dl=1',
|
| 11 |
+
'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1'
|
| 12 |
+
]
|
| 13 |
+
|
| 14 |
+
def download_file(url, save_name):
|
| 15 |
+
url = url
|
| 16 |
+
if not os.path.exists(save_name):
|
| 17 |
+
file = requests.get(url)
|
| 18 |
+
open(save_name, 'wb').write(file.content)
|
| 19 |
+
|
| 20 |
+
for i, url in enumerate(file_urls):
|
| 21 |
+
if 'mp4' in file_urls[i]:
|
| 22 |
+
download_file(
|
| 23 |
+
file_urls[i],
|
| 24 |
+
f"video.mp4"
|
| 25 |
+
)
|
| 26 |
+
else:
|
| 27 |
+
download_file(
|
| 28 |
+
file_urls[i],
|
| 29 |
+
f"image_{i}.jpg"
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
model = YOLO('best.pt')
|
| 33 |
+
path = [['image_0.jpg'], ['image_1.jpg']]
|
| 34 |
+
video_path = [['video.mp4']]
|
| 35 |
+
|
| 36 |
+
def show_preds_image(image_path):
|
| 37 |
+
image = cv2.imread(image_path)
|
| 38 |
+
outputs = model.predict(source=image_path)
|
| 39 |
+
results = outputs[0].cpu().numpy()
|
| 40 |
+
for i, det in enumerate(results.boxes.xyxy):
|
| 41 |
+
cv2.rectangle(
|
| 42 |
+
image,
|
| 43 |
+
(int(det[0]), int(det[1])),
|
| 44 |
+
(int(det[2]), int(det[3])),
|
| 45 |
+
color=(0, 0, 255),
|
| 46 |
+
thickness=2,
|
| 47 |
+
lineType=cv2.LINE_AA
|
| 48 |
+
)
|
| 49 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 50 |
+
|
| 51 |
+
inputs_image = [
|
| 52 |
+
gr.components.Image(type="filepath", label="Input Image"),
|
| 53 |
+
]
|
| 54 |
+
outputs_image = [
|
| 55 |
+
gr.components.Image(type="numpy", label="Output Image"),
|
| 56 |
+
]
|
| 57 |
+
interface_image = gr.Interface(
|
| 58 |
+
fn=show_preds_image,
|
| 59 |
+
inputs=inputs_image,
|
| 60 |
+
outputs=outputs_image,
|
| 61 |
+
title="Pothole detector app",
|
| 62 |
+
examples=path,
|
| 63 |
+
cache_examples=False,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
def show_preds_video(video_path):
|
| 67 |
+
cap = cv2.VideoCapture(video_path)
|
| 68 |
+
while(cap.isOpened()):
|
| 69 |
+
ret, frame = cap.read()
|
| 70 |
+
if ret:
|
| 71 |
+
frame_copy = frame.copy()
|
| 72 |
+
outputs = model.predict(source=frame)
|
| 73 |
+
results = outputs[0].cpu().numpy()
|
| 74 |
+
for i, det in enumerate(results.boxes.xyxy):
|
| 75 |
+
cv2.rectangle(
|
| 76 |
+
frame_copy,
|
| 77 |
+
(int(det[0]), int(det[1])),
|
| 78 |
+
(int(det[2]), int(det[3])),
|
| 79 |
+
color=(0, 0, 255),
|
| 80 |
+
thickness=2,
|
| 81 |
+
lineType=cv2.LINE_AA
|
| 82 |
+
)
|
| 83 |
+
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
| 84 |
+
|
| 85 |
+
inputs_video = [
|
| 86 |
+
gr.components.Video(type="filepath", label="Input Video"),
|
| 87 |
+
|
| 88 |
+
]
|
| 89 |
+
outputs_video = [
|
| 90 |
+
gr.components.Image(type="numpy", label="Output Image"),
|
| 91 |
+
]
|
| 92 |
+
interface_video = gr.Interface(
|
| 93 |
+
fn=show_preds_video,
|
| 94 |
+
inputs=inputs_video,
|
| 95 |
+
outputs=outputs_video,
|
| 96 |
+
title="Pothole detector",
|
| 97 |
+
examples=video_path,
|
| 98 |
+
cache_examples=False,
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
gr.TabbedInterface(
|
| 102 |
+
[interface_image, interface_video],
|
| 103 |
+
tab_names=['Image inference', 'Video inference']
|
| 104 |
+
).queue().launch()
|