File size: 8,343 Bytes
405b910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbe1d96
405b910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbe1d96
 
 
 
 
 
 
 
 
 
 
586a110
cbe1d96
e90bc6e
 
405b910
 
e90bc6e
405b910
586a110
 
 
 
 
405b910
 
 
586a110
405b910
586a110
405b910
4be7052
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gradio as gr
import random
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModelWithLMHead
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from itertools import chain

import os 

#emotion_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion")
#emotion_model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-emotion")

def get_emotion(text):
  input_ids = tokenizer.encode(text + '</s>', return_tensors='pt')
  output = model.generate(input_ids=input_ids,max_length=2)
  dec = [tokenizer.decode(ids) for ids in output]
  label = dec[0]
  return label.split()[1]

    
config = AutoConfig.from_pretrained('gorkemgoknar/gpt2chatbotenglish')
model = GPT2LMHeadModel.from_pretrained('gorkemgoknar/gpt2chatbotenglish', config=config)

tokenizer = GPT2Tokenizer.from_pretrained('gorkemgoknar/gpt2chatbotenglish')
tokenizer.model_max_length = 1024

#Dynamic Temperature 
#See experiment https://www.linkedin.com/pulse/ai-goes-job-interview-g%25C3%25B6rkem-g%25C3%25B6knar

base_temperature = 1.2
dynamic_temperature_range = 0.15

rand_range = random.uniform(-1 * dynamic_temperature_range , dynamic_temperature_range )
temperature = base_temperature  + rand_range

SPECIAL_TOKENS = ["<bos>", "<eos>", "<speaker1>", "<speaker2>", "<pad>"]

#See document for experiment https://www.linkedin.com/pulse/ai-goes-job-interview-g%C3%B6rkem-g%C3%B6knar/

def get_chat_response(name,history=[], input_txt = "Hello , what is your name?"):
  
  ai_history = history.copy()

  #ai_history.append(input_txt)
  ai_history_e = [tokenizer.encode(e) for e in ai_history]

  personality = "My name is " + name

  bos, eos, speaker1, speaker2 = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[:-1])
  
  #persona first, history next, input text must be at the end
  #[[bos, persona] , [history] , [input]]
  sequence = [[bos]  + tokenizer.encode(personality)] + ai_history_e  + [tokenizer.encode(input_txt)]
  ##[[bos, persona] , [speaker1 .., speakser2 .., speaker1 ... speaker2 ... , [input]]
  sequence = [sequence[0]] + [[speaker2 if (len(sequence)-i) % 2 else speaker1] + s for i, s in enumerate(sequence[1:])]
  
  sequence = list(chain(*sequence))

  #bot_input_ids = tokenizer.encode(personality + tokenizer.eos_token + input_txt + tokenizer.eos_token  , return_tensors='pt')
  sequence_len = len(sequence)

  #optimum response and speed
  chat_history_ids = model.generate(
          torch.tensor(sequence).unsqueeze(0), max_length=50,
          pad_token_id=tokenizer.eos_token_id,  
          no_repeat_ngram_size=3,       
          do_sample=True, 
          top_k=60, 
          top_p=0.8,
          temperature = 1.3
      )
  out_str = tokenizer.decode(chat_history_ids[0][sequence_len:],  skip_special_tokens=True)
  #out_str = tokenizer.decode(chat_history_ids[:, sequence.shape[-1]:][0], skip_special_tokens=False)
  return out_str
  
##you can use anyone from below
'''
| Macleod | Moran | Brenda | Ramirez | Peter Parker | Quentin Beck | Andy 
| Red | Norton | Willard | Chief | Chef | Kilgore | Kurtz | Westley | Buttercup 
| Vizzini | Fezzik | Inigo | Man In Black | Taylor | Zira | Zaius | Cornelius 
| Bud | Lindsey | Hippy | Erin | Ed | George | Donna | Trinity | Agent Smith 
| Morpheus | Neo | Tank | Meryl | Truman | Marlon | Christof | Stromboli | Bumstead 
| Schreber | Walker | Korben | Cornelius | Loc Rhod | Anakin | Obi-Wan | Palpatine 
| Padme | Superman | Luthor | Dude | Walter | Donny | Maude | General | Starkiller 
| Indiana | Willie | Short Round | John | Sarah | Terminator | Miller | Sarge | Reiben 
| Jackson | Upham | Chuckie | Will | Lambeau | Sean | Skylar | Saavik | Spock 
| Kirk | Bones | Khan | Kirk | Spock | Sybok | Scotty | Bourne | Pamela | Abbott 
| Nicky | Marshall | Korshunov | Troy | Vig | Archie Gates | Doc | Interrogator 
| Ellie | Ted | Peter | Drumlin | Joss | Macready | Childs | Nicholas | Conrad 
| Feingold | Christine | Adam | Barbara | Delia | Lydia | Cathy | Charles | Otho 
| Schaefer | Han | Luke | Leia | Threepio | Vader | Yoda | Lando | Elaine | Striker 
| Dr. Rumack | Kramer | David | Saavik | Kirk | Kruge | Holden | Deckard | Rachael 
| Batty | Sebastian | Sam | Frodo | Pippin | Gandalf | Kay | Edwards | Laurel 
| Edgar | Zed | Jay | Malloy | Plissken | Steve Rogers | Tony Stark | Scott Lang 
| Bruce Banner | Bruce | Edward | Two-Face | Batman | Chase | Alfred | Dick 
| Riddler | Din Djarin | Greef Karga | Kuiil | Ig-11 | Cara Dune | Peli Motto 
| Toro Calican | Ripley | Meredith | Dickie | Marge | Peter | Lambert | Kane 
| Dallas | Ripley | Ash | Parker | Threepio | Luke | Leia | Ben | Han | Common Bob 
| Common Alice | Jack | Tyler | Marla | Dana | Stantz | Venkman | Spengler | Louis 
| Fry | Johns | Riddick | Kirk | Decker | Spock | "Ilia | Indy | Belloq | Marion 
| Brother | Allnut | Rose | Qui-Gon | Jar Jar
'''

MODEL_NAME= "tts_models/multilingual/multi-dataset/your_tts"


## SEE https://huggingface.co/spaces/gorkemgoknar/movie_chat_gpt_yourtts_fileinput for actual call



personality_choices = ["Gandalf", "Riddick", "Macleod", "Morpheus", "Neo","Spock","Vader","Indy"]

examples= ["Gandalf", "What is your name?"]

css="""
    .chatbox {display:flex;flex-direction:column}
    .user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
    .user_msg {background-color:cornflowerblue;color:white;align-self:start}
    .resp_msg {background-color:lightgray;align-self:self-end}
"""


#some selected ones are in for demo use
personality_choices = ["Gandalf", "Riddick", "Macleod", "Morpheus", "Neo","Spock","Vader","Indy", "Ig-11","Threepio","Tony Stark","Batman","Vizzini"]
title = "Movie Chatbot with Coqui YourTTS"
description = "Chat with your favorite movie characters, making characters voice like you. Test it out in metayazar.com/chatbot for more movie/character options. See Coqui Space for more TTS models https://huggingface.co/spaces/coqui/CoquiTTS"
article = "<p style='text-align: center'><a href='https://www.linkedin.com/pulse/ai-goes-job-interview-g%C3%B6rkem-g%C3%B6knar/' target='_blank'>AI Goes to Job Interview</a> | <a href='https://www.metayazar.com/' target='_blank'>Metayazar AI Writer</a>  |<a href='https://www.linkedin.com/in/goknar/' target='_blank'>Görkem Göknar</a></p>"

#History not implemented in this demo, use metayazar.com/chatbot for a movie and character dropdown chat interface
##interface = gr.Interface(fn=greet, inputs=[gr.inputs.Dropdown(personality_choices) ,"text"], title=title, description=description, outputs="text")

examples=[['Gandalf','dragon.wav','Who are you sir?',{}]]

history =   {"character": "None", "message_history" : [] }


interface_file= gr.Interface.load("gorkemgoknar/movie_chat_gpt_yourtts_fileinput",
                                 src="spaces",
                       inputs=[gr.inputs.Dropdown(personality_choices),
                                gr.inputs.Audio(type="filepath"),
                                "text", 
                                "state"], 
                        outputs=["html","state",gr.outputs.Audio(type="file")],      
                        css=css, title=title, description=description,article=article )


interface_mic= gr.Interface.load("gorkemgoknar/movie_chat_gpt_yourtts",
                                 src="spaces",
                        inputs=[gr.inputs.Dropdown(personality_choices),
                                gr.inputs.Audio(source="microphone", type="filepath") ,
                                "text", 
                                "state"], 
                        outputs=["html","state",gr.outputs.Audio(type="file")],      
                        css=css, title=title, description=description,article=article )


interface_text = gr.Interface.load("gorkemgoknar/moviechatbot",
                                   src="spaces",
                               inputs=[gr.inputs.Dropdown(personality_choices),
                                "text", 
                                "state"], 
                        outputs=["html","state"],      
                        css=css, title="Chat Text Only", description=description,article=article)
            
appinterface = gr.TabbedInterface([interface_mic, interface_text], ["Chat with Record",  "Chat Text only"])      
if __name__ == "__main__":
    appinterface.launch()