Huanzhi Mao
commited on
Commit
·
c94dd2f
1
Parent(s):
23ba85c
update description
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import os
|
|
5 |
import re
|
6 |
import pandas as pd
|
7 |
import csv
|
|
|
8 |
# from anthropic import Anthropic
|
9 |
from openai import OpenAI
|
10 |
from mistralai.client import MistralClient
|
@@ -632,12 +633,26 @@ COLUMNS = [
|
|
632 |
"Latency Standard Deviation (s)",
|
633 |
]
|
634 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
635 |
def parse_csv(text):
|
636 |
-
lines = text.split(
|
637 |
lines = lines[1:]
|
638 |
result = []
|
639 |
for i in range(len(lines)):
|
640 |
-
row = lines[i].split(
|
641 |
row = [parse_value(value) for value in row]
|
642 |
row.pop(3)
|
643 |
row.pop(5)
|
@@ -647,12 +662,13 @@ def parse_csv(text):
|
|
647 |
row.pop(6)
|
648 |
row.pop(10)
|
649 |
row.pop(10)
|
650 |
-
|
651 |
result.append(row)
|
652 |
return result
|
653 |
|
|
|
654 |
def parse_value(value):
|
655 |
-
if value.endswith(
|
656 |
return float(value[:-1])
|
657 |
try:
|
658 |
return float(value)
|
@@ -660,54 +676,57 @@ def parse_value(value):
|
|
660 |
return value
|
661 |
|
662 |
|
663 |
-
with open(
|
664 |
csv_text = file.read()
|
665 |
DATA = parse_csv(csv_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
666 |
|
667 |
MODELS = [
|
668 |
"gorilla-openfunctions-v2",
|
669 |
"gpt-4-1106-preview-fc",
|
670 |
"gpt-4-0125-preview-fc",
|
671 |
"gpt-3.5-turbo-0125-fc",
|
672 |
-
"mistral-large-fc"
|
673 |
]
|
674 |
|
675 |
|
676 |
def send_feedback(prompt, function, model, temperature, codeOutput, jsonOutput, vote):
|
677 |
# Login and get access token
|
678 |
-
login_url =
|
679 |
-
headers = {
|
680 |
-
login_data = {
|
681 |
-
'username': 'website',
|
682 |
-
'password': mongoDBPassword
|
683 |
-
}
|
684 |
response = requests.post(login_url, headers=headers, json=login_data)
|
685 |
-
access_token = response.json()[
|
686 |
# Prepare data for sending feedback
|
687 |
-
url =
|
688 |
headers = {
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
}
|
693 |
|
694 |
-
|
695 |
if not prompt or not function:
|
696 |
return
|
697 |
|
698 |
body = {
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
}
|
711 |
}
|
712 |
|
713 |
# Send feedback
|
@@ -715,60 +734,79 @@ def send_feedback(prompt, function, model, temperature, codeOutput, jsonOutput,
|
|
715 |
if response.ok:
|
716 |
print("Document inserted:", response.json())
|
717 |
else:
|
718 |
-
print(
|
|
|
719 |
|
720 |
def get_voting_result():
|
721 |
-
login_url =
|
722 |
-
headers = {
|
723 |
-
login_data = {
|
724 |
-
'username': 'website',
|
725 |
-
'password': mongoDBPassword
|
726 |
-
}
|
727 |
response = requests.post(login_url, headers=headers, json=login_data)
|
728 |
-
access_token = response.json()[
|
729 |
-
|
730 |
# Scanning the database
|
731 |
-
url =
|
732 |
headers = {
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
}
|
737 |
body = {
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
}
|
742 |
response = requests.post(url, headers=headers, json=body)
|
743 |
if response.ok:
|
744 |
data = response.json()
|
745 |
-
votes = data[
|
746 |
-
votes = [vote for vote in votes if vote[
|
747 |
# extract only the model, positive count, negative count
|
748 |
model_votes = {}
|
749 |
for vote in votes:
|
750 |
-
model = vote[
|
751 |
if model not in model_votes:
|
752 |
-
model_votes[model] = {
|
753 |
-
model_votes[model][vote[
|
754 |
for model in model_votes:
|
755 |
-
model_votes[model][
|
756 |
-
|
|
|
|
|
757 |
result = []
|
758 |
for model in model_votes:
|
759 |
-
result.append(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
760 |
result = sorted(result, key=lambda x: x[1], reverse=True)
|
761 |
-
return pd.DataFrame(
|
|
|
|
|
762 |
else:
|
763 |
-
print(
|
764 |
return []
|
765 |
-
|
766 |
-
|
767 |
-
|
|
|
|
|
|
|
|
|
|
|
768 |
return "Thank you for your feedback. We will use this to improve our service."
|
769 |
|
770 |
-
|
771 |
-
|
|
|
|
|
|
|
|
|
|
|
772 |
return "Thank you for your feedback. We will use this to improve our service."
|
773 |
|
774 |
|
@@ -905,7 +943,7 @@ def get_openai_response(prompt, function, model, temperature):
|
|
905 |
|
906 |
|
907 |
def get_mistral_response(prompt, function, model, temperature):
|
908 |
-
client = MistralClient(api_key=
|
909 |
oai_tool = []
|
910 |
function = json.loads(function)
|
911 |
item = function # use item in the later code
|
@@ -913,7 +951,9 @@ def get_mistral_response(prompt, function, model, temperature):
|
|
913 |
item["name"] = re.sub(
|
914 |
r"\.", "_", item["name"]
|
915 |
) # OAI does not support "." in the function name so we replace it with "_". ^[a-zA-Z0-9_-]{1,64}$ is the regex for the name.
|
916 |
-
item["parameters"][
|
|
|
|
|
917 |
if "properties" not in item["parameters"]:
|
918 |
item["parameters"]["properties"] = item["parameters"].copy()
|
919 |
item["parameters"]["type"] = "object"
|
@@ -928,12 +968,12 @@ def get_mistral_response(prompt, function, model, temperature):
|
|
928 |
)
|
929 |
oai_tool.append({"type": "function", "function": item})
|
930 |
message = [
|
931 |
-
|
932 |
-
|
933 |
chat_response = client.chat(
|
934 |
model="mistral-large-latest",
|
935 |
messages=message,
|
936 |
-
tools
|
937 |
temperature=temperature,
|
938 |
)
|
939 |
try:
|
@@ -949,8 +989,8 @@ def get_mistral_response(prompt, function, model, temperature):
|
|
949 |
except:
|
950 |
result = chat_response.choices[0].message.content
|
951 |
return result, "The model failed to return a JSON output."
|
952 |
-
|
953 |
-
|
954 |
def distribute_task(prompt, function, model, temperature):
|
955 |
if "gpt" in model:
|
956 |
return get_openai_response(prompt, function, model, temperature)
|
@@ -968,6 +1008,13 @@ def get_leaderboard():
|
|
968 |
return leaderboard_df
|
969 |
|
970 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
971 |
prompt = gr.Textbox(label="Prompt", placeholder="Type your prompt here...", lines=4)
|
972 |
funcDescription = gr.Textbox(
|
973 |
label="Function Description", placeholder="Describe the function...", lines=20
|
@@ -977,14 +1024,40 @@ model = gr.Dropdown(label="Model", choices=MODELS)
|
|
977 |
|
978 |
with gr.Blocks() as demo:
|
979 |
with gr.Tabs():
|
980 |
-
with gr.TabItem("Leaderboard"):
|
981 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
982 |
gr.Markdown(
|
983 |
-
"**
|
984 |
)
|
985 |
-
|
986 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
987 |
)
|
|
|
988 |
|
989 |
with gr.TabItem("Try It Out"):
|
990 |
with gr.Row():
|
@@ -1050,18 +1123,32 @@ with gr.Blocks() as demo:
|
|
1050 |
fn=None,
|
1051 |
inputs=[prompt, model, temperature, codeOutput, jsonOutput],
|
1052 |
outputs=[],
|
1053 |
-
js='(prompt, model, temperature, codeOutput, jsonOutput) => window.open(`https://github.com/ShishirPatil/gorilla/issues/new?assignees=&labels=hosted-openfunctions-v2&projects=&template=hosted-openfunctions-v2.md&title=[bug] OpenFunctions-v2: &body=**Issue Description**%0A%0APrompt: ${prompt}%0A%0AModel: ${model}%0A%0ATemperature: ${temperature}%0A%0AOutput (or Error if request failed): ${codeOutput} %0A%0A ${jsonOutput}%0A%0A**Additional Information**\n`, "_blank")'
|
1054 |
)
|
1055 |
-
|
1056 |
thumbs_up.click(
|
1057 |
fn=send_feedback_positive,
|
1058 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1059 |
outputs=[feedbackMsg],
|
1060 |
)
|
1061 |
-
|
1062 |
thumbs_down.click(
|
1063 |
fn=send_feedback_negative,
|
1064 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1065 |
outputs=[feedbackMsg],
|
1066 |
)
|
1067 |
|
@@ -1070,5 +1157,5 @@ with gr.Blocks() as demo:
|
|
1070 |
# leaderboard_data = gr.Dataframe(
|
1071 |
# value=get_voting_result(), wrap=True
|
1072 |
# )
|
1073 |
-
|
1074 |
demo.launch()
|
|
|
5 |
import re
|
6 |
import pandas as pd
|
7 |
import csv
|
8 |
+
|
9 |
# from anthropic import Anthropic
|
10 |
from openai import OpenAI
|
11 |
from mistralai.client import MistralClient
|
|
|
633 |
"Latency Standard Deviation (s)",
|
634 |
]
|
635 |
|
636 |
+
COLUMNS_SUMMARY = [
|
637 |
+
"Rank",
|
638 |
+
"Overall Acc",
|
639 |
+
"Model",
|
640 |
+
"Organization",
|
641 |
+
"License",
|
642 |
+
"AST Summary",
|
643 |
+
"Exec Summary",
|
644 |
+
"Relevance Detection",
|
645 |
+
"Cost ($ Per 1k Function Calls)",
|
646 |
+
"Latency Mean (s)",
|
647 |
+
]
|
648 |
+
|
649 |
+
|
650 |
def parse_csv(text):
|
651 |
+
lines = text.split("\n")
|
652 |
lines = lines[1:]
|
653 |
result = []
|
654 |
for i in range(len(lines)):
|
655 |
+
row = lines[i].split(",")
|
656 |
row = [parse_value(value) for value in row]
|
657 |
row.pop(3)
|
658 |
row.pop(5)
|
|
|
662 |
row.pop(6)
|
663 |
row.pop(10)
|
664 |
row.pop(10)
|
665 |
+
|
666 |
result.append(row)
|
667 |
return result
|
668 |
|
669 |
+
|
670 |
def parse_value(value):
|
671 |
+
if value.endswith("%"):
|
672 |
return float(value[:-1])
|
673 |
try:
|
674 |
return float(value)
|
|
|
676 |
return value
|
677 |
|
678 |
|
679 |
+
with open("./data.csv", "r") as file:
|
680 |
csv_text = file.read()
|
681 |
DATA = parse_csv(csv_text)
|
682 |
+
DATA_SUMMARY = [
|
683 |
+
row[:5]
|
684 |
+
+ [round((row[5] + row[6] + row[7] + row[8]) / 4, 2)]
|
685 |
+
+ [round((row[9] + row[10] + row[11] + row[12]) / 4, 2)]
|
686 |
+
+ row[13:16]
|
687 |
+
for row in DATA
|
688 |
+
]
|
689 |
|
690 |
MODELS = [
|
691 |
"gorilla-openfunctions-v2",
|
692 |
"gpt-4-1106-preview-fc",
|
693 |
"gpt-4-0125-preview-fc",
|
694 |
"gpt-3.5-turbo-0125-fc",
|
695 |
+
"mistral-large-fc",
|
696 |
]
|
697 |
|
698 |
|
699 |
def send_feedback(prompt, function, model, temperature, codeOutput, jsonOutput, vote):
|
700 |
# Login and get access token
|
701 |
+
login_url = "https://us-west-2.aws.realm.mongodb.com/api/client/v2.0/app/data-onwzq/auth/providers/local-userpass/login"
|
702 |
+
headers = {"Content-Type": "application/json"}
|
703 |
+
login_data = {"username": "website", "password": mongoDBPassword}
|
|
|
|
|
|
|
704 |
response = requests.post(login_url, headers=headers, json=login_data)
|
705 |
+
access_token = response.json()["access_token"]
|
706 |
# Prepare data for sending feedback
|
707 |
+
url = "https://us-west-2.aws.data.mongodb-api.com/app/data-onwzq/endpoint/data/v1/action/insertOne"
|
708 |
headers = {
|
709 |
+
"Content-Type": "application/json",
|
710 |
+
"Access-Control-Request-Headers": "*",
|
711 |
+
"Authorization": f"Bearer {access_token}",
|
712 |
}
|
713 |
|
|
|
714 |
if not prompt or not function:
|
715 |
return
|
716 |
|
717 |
body = {
|
718 |
+
"collection": "vote",
|
719 |
+
"database": "gorilla-feedback",
|
720 |
+
"dataSource": "gorilla",
|
721 |
+
"document": {
|
722 |
+
"prompt": prompt,
|
723 |
+
"funcDef": function,
|
724 |
+
"temperature": temperature,
|
725 |
+
"model": model,
|
726 |
+
"codeOutput": codeOutput,
|
727 |
+
"jsonOutput": jsonOutput,
|
728 |
+
"result": vote,
|
729 |
+
},
|
730 |
}
|
731 |
|
732 |
# Send feedback
|
|
|
734 |
if response.ok:
|
735 |
print("Document inserted:", response.json())
|
736 |
else:
|
737 |
+
print("Error:", response.text)
|
738 |
+
|
739 |
|
740 |
def get_voting_result():
|
741 |
+
login_url = "https://us-west-2.aws.realm.mongodb.com/api/client/v2.0/app/data-onwzq/auth/providers/local-userpass/login"
|
742 |
+
headers = {"Content-Type": "application/json"}
|
743 |
+
login_data = {"username": "website", "password": mongoDBPassword}
|
|
|
|
|
|
|
744 |
response = requests.post(login_url, headers=headers, json=login_data)
|
745 |
+
access_token = response.json()["access_token"]
|
746 |
+
|
747 |
# Scanning the database
|
748 |
+
url = "https://us-west-2.aws.data.mongodb-api.com/app/data-onwzq/endpoint/data/v1/action/find"
|
749 |
headers = {
|
750 |
+
"Content-Type": "application/json",
|
751 |
+
"Access-Control-Request-Headers": "*",
|
752 |
+
"Authorization": f"Bearer {access_token}",
|
753 |
}
|
754 |
body = {
|
755 |
+
"collection": "vote",
|
756 |
+
"database": "gorilla-feedback",
|
757 |
+
"dataSource": "gorilla",
|
758 |
}
|
759 |
response = requests.post(url, headers=headers, json=body)
|
760 |
if response.ok:
|
761 |
data = response.json()
|
762 |
+
votes = data["documents"]
|
763 |
+
votes = [vote for vote in votes if vote["result"] in ["positive", "negative"]]
|
764 |
# extract only the model, positive count, negative count
|
765 |
model_votes = {}
|
766 |
for vote in votes:
|
767 |
+
model = vote["model"]
|
768 |
if model not in model_votes:
|
769 |
+
model_votes[model] = {"positive": 0, "negative": 0}
|
770 |
+
model_votes[model][vote["result"]] += 1
|
771 |
for model in model_votes:
|
772 |
+
model_votes[model]["accuracy"] = model_votes[model]["positive"] / (
|
773 |
+
model_votes[model]["positive"] + model_votes[model]["negative"]
|
774 |
+
)
|
775 |
+
|
776 |
result = []
|
777 |
for model in model_votes:
|
778 |
+
result.append(
|
779 |
+
[
|
780 |
+
model,
|
781 |
+
model_votes[model]["accuracy"],
|
782 |
+
model_votes[model]["positive"],
|
783 |
+
model_votes[model]["negative"],
|
784 |
+
]
|
785 |
+
)
|
786 |
result = sorted(result, key=lambda x: x[1], reverse=True)
|
787 |
+
return pd.DataFrame(
|
788 |
+
result, columns=["Model", "Accuracy", "Positive", "Negative"]
|
789 |
+
)
|
790 |
else:
|
791 |
+
print("Error:", response.text)
|
792 |
return []
|
793 |
+
|
794 |
+
|
795 |
+
def send_feedback_negative(
|
796 |
+
prompt, function, model, temperature, codeOutput, jsonOutput
|
797 |
+
):
|
798 |
+
send_feedback(
|
799 |
+
prompt, function, model, temperature, codeOutput, jsonOutput, "negative"
|
800 |
+
)
|
801 |
return "Thank you for your feedback. We will use this to improve our service."
|
802 |
|
803 |
+
|
804 |
+
def send_feedback_positive(
|
805 |
+
prompt, function, model, temperature, codeOutput, jsonOutput
|
806 |
+
):
|
807 |
+
send_feedback(
|
808 |
+
prompt, function, model, temperature, codeOutput, jsonOutput, "positive"
|
809 |
+
)
|
810 |
return "Thank you for your feedback. We will use this to improve our service."
|
811 |
|
812 |
|
|
|
943 |
|
944 |
|
945 |
def get_mistral_response(prompt, function, model, temperature):
|
946 |
+
client = MistralClient(api_key=mistralKey)
|
947 |
oai_tool = []
|
948 |
function = json.loads(function)
|
949 |
item = function # use item in the later code
|
|
|
951 |
item["name"] = re.sub(
|
952 |
r"\.", "_", item["name"]
|
953 |
) # OAI does not support "." in the function name so we replace it with "_". ^[a-zA-Z0-9_-]{1,64}$ is the regex for the name.
|
954 |
+
item["parameters"][
|
955 |
+
"type"
|
956 |
+
] = "object" # If typing is missing, we assume it is an object since OAI requires a type.
|
957 |
if "properties" not in item["parameters"]:
|
958 |
item["parameters"]["properties"] = item["parameters"].copy()
|
959 |
item["parameters"]["type"] = "object"
|
|
|
968 |
)
|
969 |
oai_tool.append({"type": "function", "function": item})
|
970 |
message = [
|
971 |
+
ChatMessage(role="user", content=prompt),
|
972 |
+
]
|
973 |
chat_response = client.chat(
|
974 |
model="mistral-large-latest",
|
975 |
messages=message,
|
976 |
+
tools=oai_tool,
|
977 |
temperature=temperature,
|
978 |
)
|
979 |
try:
|
|
|
989 |
except:
|
990 |
result = chat_response.choices[0].message.content
|
991 |
return result, "The model failed to return a JSON output."
|
992 |
+
|
993 |
+
|
994 |
def distribute_task(prompt, function, model, temperature):
|
995 |
if "gpt" in model:
|
996 |
return get_openai_response(prompt, function, model, temperature)
|
|
|
1008 |
return leaderboard_df
|
1009 |
|
1010 |
|
1011 |
+
def get_summary():
|
1012 |
+
# Convert the leaderboard data to a pandas DataFrame for easier handling and display
|
1013 |
+
leaderboard_df = pd.DataFrame(DATA_SUMMARY, columns=COLUMNS_SUMMARY)
|
1014 |
+
leaderboard_df = leaderboard_df.sort_values(by="Rank")
|
1015 |
+
return leaderboard_df
|
1016 |
+
|
1017 |
+
|
1018 |
prompt = gr.Textbox(label="Prompt", placeholder="Type your prompt here...", lines=4)
|
1019 |
funcDescription = gr.Textbox(
|
1020 |
label="Function Description", placeholder="Describe the function...", lines=20
|
|
|
1024 |
|
1025 |
with gr.Blocks() as demo:
|
1026 |
with gr.Tabs():
|
1027 |
+
with gr.TabItem("Summary Leaderboard"):
|
1028 |
+
gr.Markdown(
|
1029 |
+
"**This live leaderboard evaluates the LLM's ability to call functions (aka tools) accurately. This leaderboard consists of real-world data and will be updated periodically. For more information on the evaluation dataset and methodology, please refer to our [blog](https://gorilla.cs.berkeley.edu/blogs/10_checker_manual.html) and [code](https://github.com/ShishirPatil/gorilla).**"
|
1030 |
+
)
|
1031 |
+
gr.Markdown(
|
1032 |
+
"""**AST means evaluation through Abstract Syntax Tree and Exec means evaluation through execution.**
|
1033 |
+
|
1034 |
+
**FC = native support for function/tool calling.**
|
1035 |
+
|
1036 |
+
**Cost is calculated as an estimate of the cost per 1000 function calls, in USD. Latency is measured in seconds.**
|
1037 |
+
|
1038 |
+
**AST Summary is the unweighted average of the four test categories under AST Evaluation. Exec Summary is the unweighted average of the four test categories under Exec Evaluation.**
|
1039 |
+
|
1040 |
+
**Click on column header to sort. If you would like to add your model or contribute test-cases, please contact us via [discord](https://discord.gg/SwTyuTAxX3).**
|
1041 |
+
"""
|
1042 |
+
)
|
1043 |
+
leaderboard_data = gr.Dataframe(value=get_summary(), wrap=True)
|
1044 |
+
with gr.TabItem("Full Leaderboard"):
|
1045 |
gr.Markdown(
|
1046 |
+
"**This live leaderboard evaluates the LLM's ability to call functions (aka tools) accurately. This leaderboard consists of real-world data and will be updated periodically. For more information on the evaluation dataset and methodology, please refer to our [blog](https://gorilla.cs.berkeley.edu/blogs/10_checker_manual.html) and [code](https://github.com/ShishirPatil/gorilla).**"
|
1047 |
)
|
1048 |
+
gr.Markdown(
|
1049 |
+
"""**AST means evaluation through Abstract Syntax Tree and Exec means evaluation through execution.**
|
1050 |
+
|
1051 |
+
**FC = native support for function/tool calling.**
|
1052 |
+
|
1053 |
+
**Cost is calculated as an estimate of the cost per 1000 function calls, in USD. Latency is measured in seconds.**
|
1054 |
+
|
1055 |
+
**AST Summary is the unweighted average of the four test categories under AST Evaluation. Exec Summary is the unweighted average of the four test categories under Exec Evaluation.**
|
1056 |
+
|
1057 |
+
**Click on column header to sort. If you would like to add your model or contribute test-cases, please contact us via [discord](https://discord.gg/SwTyuTAxX3).**
|
1058 |
+
"""
|
1059 |
)
|
1060 |
+
leaderboard_data = gr.Dataframe(value=get_leaderboard(), wrap=True)
|
1061 |
|
1062 |
with gr.TabItem("Try It Out"):
|
1063 |
with gr.Row():
|
|
|
1123 |
fn=None,
|
1124 |
inputs=[prompt, model, temperature, codeOutput, jsonOutput],
|
1125 |
outputs=[],
|
1126 |
+
js='(prompt, model, temperature, codeOutput, jsonOutput) => window.open(`https://github.com/ShishirPatil/gorilla/issues/new?assignees=&labels=hosted-openfunctions-v2&projects=&template=hosted-openfunctions-v2.md&title=[bug] OpenFunctions-v2: &body=**Issue Description**%0A%0APrompt: ${prompt}%0A%0AModel: ${model}%0A%0ATemperature: ${temperature}%0A%0AOutput (or Error if request failed): ${codeOutput} %0A%0A ${jsonOutput}%0A%0A**Additional Information**\n`, "_blank")',
|
1127 |
)
|
1128 |
+
|
1129 |
thumbs_up.click(
|
1130 |
fn=send_feedback_positive,
|
1131 |
+
inputs=[
|
1132 |
+
prompt,
|
1133 |
+
funcDescription,
|
1134 |
+
model,
|
1135 |
+
temperature,
|
1136 |
+
codeOutput,
|
1137 |
+
jsonOutput,
|
1138 |
+
],
|
1139 |
outputs=[feedbackMsg],
|
1140 |
)
|
1141 |
+
|
1142 |
thumbs_down.click(
|
1143 |
fn=send_feedback_negative,
|
1144 |
+
inputs=[
|
1145 |
+
prompt,
|
1146 |
+
funcDescription,
|
1147 |
+
model,
|
1148 |
+
temperature,
|
1149 |
+
codeOutput,
|
1150 |
+
jsonOutput,
|
1151 |
+
],
|
1152 |
outputs=[feedbackMsg],
|
1153 |
)
|
1154 |
|
|
|
1157 |
# leaderboard_data = gr.Dataframe(
|
1158 |
# value=get_voting_result(), wrap=True
|
1159 |
# )
|
1160 |
+
|
1161 |
demo.launch()
|