import spaces from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import torch import soundfile as sf from xcodec2.modeling_xcodec2 import XCodec2Model import torchaudio import gradio as gr import tempfile import requests # Added import for downloading the default WAV # Download the default WAV file default_wav_url = "https://file.thatvoid.com/main/20250127T095211591Z-ee8c576d2304e5195ddfce77a45e0377.wav" default_wav_path = "default_voice.wav" try: response = requests.get(default_wav_url) response.raise_for_status() with open(default_wav_path, "wb") as f: f.write(response.content) except Exception as e: print(f"Failed to download default WAV: {e}") default_wav_path = None # Fallback to requiring user input llasa_3b = 'srinivasbilla/llasa-3b' tokenizer = AutoTokenizer.from_pretrained(llasa_3b) model = AutoModelForCausalLM.from_pretrained( llasa_3b, trust_remote_code=True, device_map='cuda', ) model_path = "srinivasbilla/xcodec2" Codec_model = XCodec2Model.from_pretrained(model_path) Codec_model.eval().cuda() whisper_turbo_pipe = pipeline( "automatic-speech-recognition", model="openai/whisper-large-v3-turbo", torch_dtype=torch.float16, device='cuda', ) def ids_to_speech_tokens(speech_ids): speech_tokens_str = [] for speech_id in speech_ids: speech_tokens_str.append(f"<|s_{speech_id}|>") return speech_tokens_str def extract_speech_ids(speech_tokens_str): speech_ids = [] for token_str in speech_tokens_str: if token_str.startswith('<|s_') and token_str.endswith('|>'): num_str = token_str[4:-2] num = int(num_str) speech_ids.append(num) else: print(f"Unexpected token: {token_str}") return speech_ids @spaces.GPU(duration=60) def infer(sample_audio_path, target_text, progress=gr.Progress()): with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: progress(0, 'Loading and trimming audio...') waveform, sample_rate = torchaudio.load(sample_audio_path) if len(waveform[0])/sample_rate > 15: gr.Warning("Trimming audio to first 15secs.") waveform = waveform[:, :sample_rate*15] if waveform.size(0) > 1: waveform_mono = torch.mean(waveform, dim=0, keepdim=True) else: waveform_mono = waveform prompt_wav = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform_mono) prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())['text'].strip() progress(0.5, 'Transcribed! Generating speech...') if len(target_text) == 0: return None elif len(target_text) > 300: gr.Warning("Text is too long. Please keep it under 300 characters.") target_text = target_text[:300] input_text = prompt_text + ' ' + target_text with torch.no_grad(): vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav) vq_code_prompt = vq_code_prompt[0,0,:] speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt) formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>" chat = [ {"role": "user", "content": "Convert the text to speech:" + formatted_text}, {"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)} ] input_ids = tokenizer.apply_chat_template( chat, tokenize=True, return_tensors='pt', continue_final_message=True ) input_ids = input_ids.to('cuda') speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>') outputs = model.generate( input_ids, max_length=2048, eos_token_id= speech_end_id , do_sample=True, top_p=1, temperature=0.8 ) generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1] speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) speech_tokens = extract_speech_ids(speech_tokens) speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0) gen_wav = Codec_model.decode_code(speech_tokens) gen_wav = gen_wav[:,:,prompt_wav.shape[1]:] progress(1, 'Synthesized!') return (16000, gen_wav[0, 0, :].cpu().numpy()) with gr.Blocks() as app_tts: gr.Markdown("# Zero Shot Voice Clone TTS") # Set default value for the audio input ref_audio_input = gr.Audio( label="Reference Audio", type="filepath", value=default_wav_path if default_wav_path else None # Use downloaded file or fallback ) gen_text_input = gr.Textbox(label="Text to Generate", lines=10) generate_btn = gr.Button("Synthesize", variant="primary") audio_output = gr.Audio(label="Synthesized Audio") generate_btn.click( infer, inputs=[ref_audio_input, gen_text_input], outputs=[audio_output], ) with gr.Blocks() as app_credits: gr.Markdown(""" # Credits * [zhenye234](https://github.com/zhenye234) for the original [repo](https://github.com/zhenye234/LLaSA_training) * [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS) """) with gr.Blocks() as app: gr.Markdown( """ # llasa 3b TTS This is a local web UI for llasa 3b SOTA(imo) Zero Shot Voice Cloning and TTS model. The checkpoints support English and Chinese. If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt. """ ) gr.TabbedInterface([app_tts], ["TTS"]) app.launch(ssr_mode=False)