File size: 6,003 Bytes
a489b73
dbff21d
 
 
 
 
 
 
793e8f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbff21d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff754c
d86fff3
dbff21d
d86fff3
dbff21d
9a83786
 
 
dbff21d
 
 
 
 
 
 
 
d86fff3
2779b9c
 
 
 
776d153
2779b9c
dbff21d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
793e8f1
dbff21d
 
 
 
 
 
 
 
 
 
 
 
 
d86fff3
 
 
dbff21d
 
 
793e8f1
 
 
 
 
 
dbff21d
 
 
 
 
 
 
793e8f1
dbff21d
 
 
3a20400
 
 
 
 
 
 
 
dbff21d
 
 
 
 
3a20400
dbff21d
 
 
 
 
 
 
 
3f8297c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
import soundfile as sf
from xcodec2.modeling_xcodec2 import XCodec2Model
import torchaudio
import gradio as gr
import tempfile
import requests  # Added import for downloading the default WAV

# Download the default WAV file
default_wav_url = "https://file.thatvoid.com/main/20250127T095211591Z-ee8c576d2304e5195ddfce77a45e0377.wav"
default_wav_path = "default_voice.wav"
try:
    response = requests.get(default_wav_url)
    response.raise_for_status()
    with open(default_wav_path, "wb") as f:
        f.write(response.content)
except Exception as e:
    print(f"Failed to download default WAV: {e}")
    default_wav_path = None  # Fallback to requiring user input

llasa_3b = 'srinivasbilla/llasa-3b'

tokenizer = AutoTokenizer.from_pretrained(llasa_3b)

model = AutoModelForCausalLM.from_pretrained(
    llasa_3b,
    trust_remote_code=True,
    device_map='cuda',
)

model_path = "srinivasbilla/xcodec2"
 
Codec_model = XCodec2Model.from_pretrained(model_path)
Codec_model.eval().cuda()

whisper_turbo_pipe = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-large-v3-turbo",
    torch_dtype=torch.float16,
    device='cuda',
)

def ids_to_speech_tokens(speech_ids):
    speech_tokens_str = []
    for speech_id in speech_ids:
        speech_tokens_str.append(f"<|s_{speech_id}|>")
    return speech_tokens_str

def extract_speech_ids(speech_tokens_str):
    speech_ids = []
    for token_str in speech_tokens_str:
        if token_str.startswith('<|s_') and token_str.endswith('|>'):
            num_str = token_str[4:-2]
            num = int(num_str)
            speech_ids.append(num)
        else:
            print(f"Unexpected token: {token_str}")
    return speech_ids

@spaces.GPU(duration=60)
def infer(sample_audio_path, target_text, progress=gr.Progress()):
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
        progress(0, 'Loading and trimming audio...')
        waveform, sample_rate = torchaudio.load(sample_audio_path)
        if len(waveform[0])/sample_rate > 15:
            gr.Warning("Trimming audio to first 15secs.")
            waveform = waveform[:, :sample_rate*15]

        if waveform.size(0) > 1:
            waveform_mono = torch.mean(waveform, dim=0, keepdim=True)
        else:
            waveform_mono = waveform

        prompt_wav = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform_mono)
        prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())['text'].strip()
        progress(0.5, 'Transcribed! Generating speech...')

        if len(target_text) == 0:
            return None
        elif len(target_text) > 300:
            gr.Warning("Text is too long. Please keep it under 300 characters.")
            target_text = target_text[:300]
            
        input_text = prompt_text + ' ' + target_text

        with torch.no_grad():
            vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
            vq_code_prompt = vq_code_prompt[0,0,:]
            speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)

            formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"

            chat = [
                {"role": "user", "content": "Convert the text to speech:" + formatted_text},
                {"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
            ]

            input_ids = tokenizer.apply_chat_template(
                chat, 
                tokenize=True, 
                return_tensors='pt', 
                continue_final_message=True
            )
            input_ids = input_ids.to('cuda')
            speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')

            outputs = model.generate(
                input_ids,
                max_length=2048,
                eos_token_id= speech_end_id ,
                do_sample=True,
                top_p=1,           
                temperature=0.8
            )
            generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1]
            speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)   
            speech_tokens = extract_speech_ids(speech_tokens)

            speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
            gen_wav = Codec_model.decode_code(speech_tokens) 
            gen_wav = gen_wav[:,:,prompt_wav.shape[1]:]

            progress(1, 'Synthesized!')

        return (16000, gen_wav[0, 0, :].cpu().numpy())

with gr.Blocks() as app_tts:
    gr.Markdown("# Zero Shot Voice Clone TTS")
    # Set default value for the audio input
    ref_audio_input = gr.Audio(
        label="Reference Audio", 
        type="filepath",
        value=default_wav_path if default_wav_path else None  # Use downloaded file or fallback
    )
    gen_text_input = gr.Textbox(label="Text to Generate", lines=10)

    generate_btn = gr.Button("Synthesize", variant="primary")
    audio_output = gr.Audio(label="Synthesized Audio")

    generate_btn.click(
        infer,
        inputs=[ref_audio_input, gen_text_input],
        outputs=[audio_output],
    )

with gr.Blocks() as app_credits:
    gr.Markdown("""
# Credits

* [zhenye234](https://github.com/zhenye234) for the original [repo](https://github.com/zhenye234/LLaSA_training)
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)        
""")

with gr.Blocks() as app:
    gr.Markdown(
        """
# llasa 3b TTS

This is a local web UI for llasa 3b SOTA(imo) Zero Shot Voice Cloning and TTS model.

The checkpoints support English and Chinese.

If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
"""
    )
    gr.TabbedInterface([app_tts], ["TTS"])

app.launch(ssr_mode=False)