File size: 23,999 Bytes
81cdd5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import concurrent.futures
import logging
import os
import re
from pathlib import Path
from typing import Dict, List

import fitz  # PyMuPDF
from PIL import Image
from langchain.docstore.document import Document as LangchainDocument
from langchain.retrievers import BM25Retriever, EnsembleRetriever
from langchain.text_splitter import NLTKTextSplitter
from langchain_community.vectorstores import Chroma
from tqdm import tqdm

logger = logging.getLogger(__name__)

IMAGE_SUMMARY_PROMPT = """Summarize key findings in this image."""


class KnowledgeBase:
    """Processes a source PDF and builds a self-contained, searchable RAG knowledge base."""

    def __init__(self, models: dict, config_overrides: dict | None = None):
        """Initializes the builder with necessary models and configuration."""
        self.embedder = models.get("embedder")
        self.ner_pipeline = models.get("ner_pipeline")

        # Set default config and apply any overrides
        self.config = self._get_default_config()
        if config_overrides:
            self.config.update(config_overrides)

        # For consistent chunking, the RAG query uses the same enriching and chunking logic as the knowledge base.
        self.document_enricher = self._enrich_documents
        self.chunker = self._create_chunks_from_documents
        self.retriever: EnsembleRetriever | None = None
        self.page_map: Dict[int, Dict] = {}
        self.source_filepath = ""

        # Create necessary directories from config
        Path(self.config["IMAGE_DIR"]).mkdir(parents=True, exist_ok=True)
        Path(self.config["CHROMA_PERSIST_DIR"]).mkdir(parents=True, exist_ok=True)

    def _get_default_config(self):
        """Returns the default configuration for the KnowledgeBase."""
        return {
            "IMAGE_DIR": Path("processed_figures_kb/"),
            "CHROMA_PERSIST_DIR": Path("chroma_db_store/"),
            "MEDICAL_ENTITY_TYPES_TO_EXTRACT": ["PROBLEM"],
            "EXTRACT_IMAGE_SUMMARIES": False,  # Disabled as we don't load the LLM here
            "FILTER_FIRST_PAGES": 6,
            "FIGURE_MIN_WIDTH": 30,
            "FIGURE_MIN_HEIGHT": 30,
            "SENTENCE_CHUNK_SIZE": 250,
            "CHUNK_FILTER_SIZE": 20,
            "RETRIEVER_TOP_K": 20,
            "ENSEMBLE_WEIGHTS_BM25,SENTENCE,NER": [0.2, 0.3, 0.5],
            "SENTENCE_SCORE_THRESHOLD": 0.6,
            "NER_SCORE_THRESHOLD": 0.5,
            "MAX_PARALLEL_WORKERS": 16,
        }

    def build(self, pdf_filepath: str):
        """The main public method to build the knowledge base from a PDF."""
        logger.info(f"--------- Building Knowledge Base from '{pdf_filepath}' ---------")
        pdf_path = Path(pdf_filepath)
        if not pdf_path.exists():
            logger.error(f"ERROR: PDF file not found at {pdf_filepath}")
            return None

        self.source_filepath = pdf_path

        # Step 1: Process the PDF and build the structured page_map.
        self.page_map = self._process_and_structure_pdf(pdf_path)
        all_docs = [
            doc for page_data in self.page_map.values() for doc in page_data["blocks"]
        ]

        # Step 2: Enrich documents with NER metadata.
        enriched_docs = self._enrich_documents(all_docs, self.config.get("EXTRACT_IMAGE_SUMMARIES", False))

        # Step 3: Chunk the enriched documents into final searchable units.
        final_chunks = self._create_chunks_from_documents(enriched_docs)

        # Step 4: Build the final ensemble retriever.
        self.retriever = self._build_ensemble_retriever(final_chunks)

        if self.retriever:
            logger.info(f"--------- Knowledge Base Built Successfully ---------")
        else:
            logger.error(f"--------- Knowledge Base Building Failed ---------")

        return self

    # --- Step 1: PDF Content Extraction ---
    def _process_and_structure_pdf(self, pdf_path: Path) -> dict:
        """Processes a PDF in parallel and directly builds the final page_map.

        This version is more efficient by opening the PDF only once.
        """
        logger.info("Step 1: Processing PDF and building structured page map...")
        page_map = {}

        try:
            # Improvement: Open the PDF ONCE to get all preliminary info
            with fitz.open(pdf_path) as doc:
                pdf_bytes_buffer = doc.write()
                page_count = len(doc)
                toc = doc.get_toc()

                # Improvement: Create a more robust chapter lookup map
                page_to_chapter_id = {}
                if toc:
                    chapters = [item for item in toc if item[0] == 1]
                    for i, (lvl, title, start_page) in enumerate(chapters):
                        end_page = (
                            chapters[i + 1][2] - 1 if i + 1 < len(chapters) else page_count
                        )
                        for page_num in range(start_page, end_page + 1):
                            page_to_chapter_id[page_num] = i

                # Create tasks for the thread pool (using a tuple as requested)
                tasks = [
                    (
                        pdf_bytes_buffer,
                        i,
                        self.config,
                        pdf_path.name,
                        page_to_chapter_id,
                    )
                    for i in range(self.config["FILTER_FIRST_PAGES"], page_count)
                ]

            # Parallel Processing
            num_workers = min(
                self.config["MAX_PARALLEL_WORKERS"], os.cpu_count() or 1
            )
            with concurrent.futures.ThreadPoolExecutor(
                    max_workers=num_workers
            ) as executor:
                futures = [
                    executor.submit(self.process_single_page, task) for task in tasks
                ]
                progress_bar = tqdm(
                    concurrent.futures.as_completed(futures),
                    total=len(tasks),
                    desc="Processing & Structuring Pages",
                )
                for future in progress_bar:
                    result = future.result()
                    if result:
                        # The worker now returns a fully formed dictionary for the page_map
                        page_map[result["page_num"]] = result["content"]

        except Exception as e:
            logger.error(f"❌ Failed to process PDF {pdf_path.name}: {e}")
            return {}

        logger.info(f"✅ PDF processed. Created a map of {len(page_map)} pages.")
        return dict(sorted(page_map.items()))

    # --- Step 2: Document Enrichment ---
    def _enrich_documents(
            self, docs: List[LangchainDocument], summarize: bool = False
    ) -> List[LangchainDocument]:
        """Enriches a list of documents with NER metadata and image summaries."""
        logger.info("\nStep 2: Enriching documents...")
        # NER Enrichment
        if self.ner_pipeline:
            logger.info("Adding NER metadata...")
            for doc in tqdm(docs, desc="Enriching with NER"):
                # 1. Skip documents that have no actual text content
                if not doc.page_content or not doc.page_content.strip():
                    continue

                try:
                    # 2. Process ONLY the text of the current document
                    processed_doc = self.ner_pipeline(doc.page_content)

                    # 3. Extract entities from the result. This result now
                    #    unambiguously belongs to the current 'doc'.
                    entities = [
                        ent.text
                        for ent in processed_doc.ents
                        if ent.type in self.config["MEDICAL_ENTITY_TYPES_TO_EXTRACT"]
                    ]

                    # 4. Assign the correctly mapped entities to the document's metadata
                    if entities:
                        # Using set() handles duplicates before sorting and joining
                        unique_entities = sorted(list(set(entities)))
                        doc.metadata["block_ner_entities"] = ", ".join(unique_entities)

                except Exception as e:
                    # Add error handling for robustness in case a single block fails
                    logger.warning(
                        f"\nWarning: Could not process NER for a block on page {doc.metadata.get('page_number', 'N/A')}: {e}")

        # Image Summary Enrichment
        if summarize:
            logger.info("Generating image summaries...")
            docs_with_figures = [
                doc for doc in docs if "linked_figure_path" in doc.metadata
            ]
            for doc in tqdm(docs_with_figures, desc="Summarizing Images"):
                try:
                    img = Image.open(doc.metadata["linked_figure_path"]).convert("RGB")
                    summary = self._summarize_image(img)
                    if summary:
                        doc.metadata["image_summary"] = summary
                except Exception as e:
                    logger.warning(
                        "Warning: Could not summarize image"
                        f" {doc.metadata.get('linked_figure_path', '')}: {e}"
                    )
        return docs

    def _summarize_image(self, pil_image: Image.Image) -> str:
        """Helper method to call the LLM for image summarization."""
        if not self.llm_pipeline:
            return ""
        messages = [{
            "role": "user",
            "content": [
                {"type": "text", "text": IMAGE_SUMMARY_PROMPT},
                {"type": "image", "image": pil_image},
            ],
        }]
        try:
            output = self.llm_pipeline(text=messages, max_new_tokens=150)
            return output[0]["generated_text"][-1]["content"].strip()
        except Exception:
            return ""

    # --- Step 3: Document Chunking ---
    def _create_chunks_from_documents(
            self, enriched_docs: List[LangchainDocument], display_results: bool = True
    ) -> List[LangchainDocument]:
        """Takes enriched documents and creates the final list of chunks for indexing.

        This method now has a single responsibility: chunking.
        """
        if display_results:
            logger.info("\nStep 3: Creating final chunks...")

        # Sentence Splitting
        if display_results:
            logger.info("Applying NLTK Sentence Splitting...")
        splitter = NLTKTextSplitter(chunk_size=self.config["SENTENCE_CHUNK_SIZE"])
        sentence_chunks = splitter.split_documents(enriched_docs)
        if display_results:
            logger.info(f"Generated {len(sentence_chunks)} sentence-level chunks.")

        # NER Entity Chunking (based on previously enriched metadata)
        if display_results:
            logger.info("Creating NER Entity Chunks...")
        ner_entity_chunks = [
            LangchainDocument(
                page_content=entity,
                metadata={**doc.metadata, "chunk_type": "ner_entity_standalone"},
            )
            for doc in enriched_docs
            if (entities_str := doc.metadata.get("block_ner_entities"))
            for entity in entities_str.split(", ")
            if entity
        ]
        if display_results:
            logger.info(f"Added {len(ner_entity_chunks)} NER entity chunks.")

        all_chunks = sentence_chunks + ner_entity_chunks
        return [chunk for chunk in all_chunks if chunk.page_content]

    # --- Step 4: Retriever Building ---
    def _build_ensemble_retriever(
            self, chunks: List[LangchainDocument]
    ) -> EnsembleRetriever | None:
        """Builds the final ensemble retriever from the chunks.

        This method was already well-focused.
        """
        if not chunks:
            logger.error("No chunks to build retriever from.")
            return None
        logger.info("\nStep 4: Building specialized retrievers...")
        sentence_chunks = [
            doc
            for doc in chunks
            if doc.metadata.get("chunk_type") != "ner_entity_standalone"
        ]
        ner_chunks = [
            doc
            for doc in chunks
            if doc.metadata.get("chunk_type") == "ner_entity_standalone"
        ]
        retrievers, weights = [], []

        if sentence_chunks:
            bm25_retriever = BM25Retriever.from_documents(sentence_chunks)
            bm25_retriever.k = self.config["RETRIEVER_TOP_K"]
            retrievers.append(bm25_retriever)
            weights.append(self.config["ENSEMBLE_WEIGHTS_BM25,SENTENCE,NER"][0])
            sentence_vs = Chroma.from_documents(
                documents=sentence_chunks,
                embedding=self.embedder,
                persist_directory=str(
                    self.config["CHROMA_PERSIST_DIR"] / "sentences"
                ),
            )
            vector_retriever = sentence_vs.as_retriever(
                search_type="similarity_score_threshold",
                search_kwargs={
                    "k": self.config["RETRIEVER_TOP_K"],
                    "score_threshold": self.config["SENTENCE_SCORE_THRESHOLD"],
                },
            )
            retrievers.append(vector_retriever)
            weights.append(self.config["ENSEMBLE_WEIGHTS_BM25,SENTENCE,NER"][1])

        if ner_chunks:
            ner_vs = Chroma.from_documents(
                documents=ner_chunks,
                embedding=self.embedder,
                persist_directory=str(self.config["CHROMA_PERSIST_DIR"] / "entities"),
            )
            ner_retriever = ner_vs.as_retriever(
                search_type="similarity_score_threshold",
                search_kwargs={
                    "k": self.config["RETRIEVER_TOP_K"],
                    "score_threshold": self.config["NER_SCORE_THRESHOLD"],
                },
            )
            retrievers.append(ner_retriever)
            weights.append(self.config["ENSEMBLE_WEIGHTS_BM25,SENTENCE,NER"][2])

        if not retrievers:
            logger.error("⚠️ Could not create any retrievers.")
            return None
        logger.info(f"Creating final ensemble with weights: {weights}")
        return EnsembleRetriever(retrievers=retrievers, weights=weights)

    @staticmethod
    def process_single_page(args_tuple: tuple) -> dict | None:
        """Worker function for parallel PDF processing.

        Processes one page and returns a structured dictionary for that page.
        """
        # Unpack arguments (still using a tuple as requested)
        pdf_bytes_buffer, page_num_idx, config, pdf_filename, page_to_chapter_id = (
            args_tuple
        )

        lc_documents = []
        page_num = page_num_idx + 1

        try:
            # Improvement: Use a 'with' statement for resource management
            with fitz.open(stream=pdf_bytes_buffer, filetype="pdf") as doc:
                page = doc[page_num_idx]
                # 1. Extract raw, potentially fragmented text blocks
                raw_text_blocks = page.get_text("blocks", sort=True)

                # 2. Immediately merge blocks into paragraphs >>>
                paragraph_blocks = KnowledgeBase._merge_text_blocks(raw_text_blocks)

                # 3. Process figures (no change)
                page_figures = []
                for fig_j, path_dict in enumerate(page.get_drawings()):
                    bbox = path_dict["rect"]
                    if (
                            bbox.is_empty
                            or bbox.width < config["FIGURE_MIN_WIDTH"]
                            or bbox.height < config["FIGURE_MIN_HEIGHT"]
                    ):
                        continue

                    # Improvement: More concise bounding box padding
                    padded_bbox = bbox + (-2, -2, 2, 2)
                    padded_bbox.intersect(page.rect)
                    if padded_bbox.is_empty:
                        continue

                    pix = page.get_pixmap(clip=padded_bbox, dpi=150)
                    if pix.width > 0 and pix.height > 0:
                        img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
                        img_path = (
                                config["IMAGE_DIR"]
                                / f"{Path(pdf_filename).stem}_p{page_num}_fig{fig_j + 1}.png"
                        )
                        img.save(img_path)
                        page_figures.append({
                            "bbox": bbox,
                            "path": str(img_path),
                            "id": f"Figure {fig_j + 1} on {pdf_filename}, page {page_num}",
                        })

                # 4. Process the clean PARAGRAPH blocks
                text_blocks_on_page = [
                    {
                        "bbox": fitz.Rect(x0, y0, x1, y1),
                        "text": text.strip(),
                        "original_idx": b_idx,
                    }
                    for b_idx, (x0, y0, x1, y1, text, _, _) in enumerate(
                        paragraph_blocks
                    )
                    if text.strip()
                ]

                # 5. Link captions and create documents
                potential_captions = [
                    b
                    for b in text_blocks_on_page
                    if re.match(r"^\s*Figure\s*\d+", b["text"], re.I)
                ]
                mapped_caption_indices = set()
                for fig_data in page_figures:
                    cap_text, cap_idx = KnowledgeBase.find_best_caption_for_figure(
                        fig_data["bbox"], potential_captions
                    )
                    if cap_text and cap_idx not in mapped_caption_indices:
                        mapped_caption_indices.add(cap_idx)
                        metadata = {
                            "source_pdf": pdf_filename,
                            "page_number": page_num,
                            "chunk_type": "figure-caption",
                            "linked_figure_path": fig_data["path"],
                            "linked_figure_id": fig_data["id"],
                            "block_id": f"{page_num}_{cap_idx}",
                            "original_block_text": cap_text,
                        }
                        lc_documents.append(
                            LangchainDocument(page_content=cap_text, metadata=metadata)
                        )

                for block_data in text_blocks_on_page:
                    if block_data["original_idx"] in mapped_caption_indices:
                        continue
                    if KnowledgeBase.should_filter_text_block(
                            block_data["text"],
                            block_data["bbox"],
                            page.rect.height,
                            config["CHUNK_FILTER_SIZE"],
                    ):
                        continue
                    metadata = {
                        "source_pdf": pdf_filename,
                        "page_number": page_num,
                        "chunk_type": "text_block",
                        "block_id": f"{page_num}_{block_data['original_idx']}",
                        "original_block_text": block_data["text"],
                    }
                    lc_documents.append(
                        LangchainDocument(
                            page_content=block_data["text"], metadata=metadata
                        )
                    )

        except Exception as e:
            logger.error(f"Error processing {pdf_filename} page {page_num}: {e}")
            return None

        if not lc_documents:
            return None

        # Structure the final output
        lc_documents.sort(
            key=lambda d: int(d.metadata.get("block_id", "0_0").split("_")[-1])
        )

        return {
            "page_num": page_num,
            "content": {
                "chapter_id": page_to_chapter_id.get(page_num, -1),
                "blocks": lc_documents,
            },
        }

    @staticmethod
    def _merge_text_blocks(blocks: list) -> list:
        """Intelligently merges fragmented text blocks into coherent paragraphs."""
        if not blocks:
            return []
        merged_blocks = []
        current_text = ""
        current_bbox = fitz.Rect()
        sentence_enders = {".", "?", "!", "•"}

        for i, block in enumerate(blocks):
            block_text = block[4].strip()
            if not current_text:  # Starting a new paragraph
                current_bbox = fitz.Rect(block[:4])
                current_text = block_text
            else:  # Continue existing paragraph
                current_bbox.include_rect(block[:4])
                current_text = f"{current_text} {block_text}"

            is_last_block = i == len(blocks) - 1
            ends_with_punctuation = block_text.endswith(tuple(sentence_enders))

            if ends_with_punctuation or is_last_block:
                merged_blocks.append((
                    current_bbox.x0,
                    current_bbox.y0,
                    current_bbox.x1,
                    current_bbox.y1,
                    current_text,
                    len(merged_blocks),
                    0,
                ))
                current_text = ""
        return merged_blocks

    @staticmethod
    def should_filter_text_block(
            block_text: str,
            block_bbox: fitz.Rect,
            page_height: float,
            filter_size: int,
    ) -> bool:
        """Determines if a text block from a header/footer should be filtered out."""
        is_in_header_area = block_bbox.y0 < (page_height * 0.10)
        is_in_footer_area = block_bbox.y1 > (page_height * 0.80)
        is_short_text = len(block_text) < filter_size
        return (is_in_header_area or is_in_footer_area) and is_short_text

    @staticmethod
    def find_best_caption_for_figure(
            figure_bbox: fitz.Rect, potential_captions_on_page: list
    ) -> tuple:
        """Finds the best caption for a given figure based on proximity and alignment."""
        best_caption_info = (None, -1)
        min_score = float("inf")

        for cap_info in potential_captions_on_page:
            cap_bbox = cap_info["bbox"]
            # Heuristic: Score captions directly below the figure
            if cap_bbox.y0 >= figure_bbox.y1 - 10:  # Caption starts below the figure
                vertical_dist = cap_bbox.y0 - figure_bbox.y1
                # Calculate horizontal overlap
                overlap_x_start = max(figure_bbox.x0, cap_bbox.x0)
                overlap_x_end = min(figure_bbox.x1, cap_bbox.x1)
                if (
                        overlap_x_end - overlap_x_start
                ) > 0:  # If they overlap horizontally
                    fig_center_x = (figure_bbox.x0 + figure_bbox.x1) / 2
                    cap_center_x = (cap_bbox.x0 + cap_bbox.x1) / 2
                    horizontal_center_dist = abs(fig_center_x - cap_center_x)
                    # Score is a combination of vertical and horizontal distance
                    score = vertical_dist + (horizontal_center_dist * 0.5)
                    if score < min_score:
                        min_score = score
                        best_caption_info = (cap_info["text"], cap_info["original_idx"])
        return best_caption_info