Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 23,999 Bytes
81cdd5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import concurrent.futures
import logging
import os
import re
from pathlib import Path
from typing import Dict, List
import fitz # PyMuPDF
from PIL import Image
from langchain.docstore.document import Document as LangchainDocument
from langchain.retrievers import BM25Retriever, EnsembleRetriever
from langchain.text_splitter import NLTKTextSplitter
from langchain_community.vectorstores import Chroma
from tqdm import tqdm
logger = logging.getLogger(__name__)
IMAGE_SUMMARY_PROMPT = """Summarize key findings in this image."""
class KnowledgeBase:
"""Processes a source PDF and builds a self-contained, searchable RAG knowledge base."""
def __init__(self, models: dict, config_overrides: dict | None = None):
"""Initializes the builder with necessary models and configuration."""
self.embedder = models.get("embedder")
self.ner_pipeline = models.get("ner_pipeline")
# Set default config and apply any overrides
self.config = self._get_default_config()
if config_overrides:
self.config.update(config_overrides)
# For consistent chunking, the RAG query uses the same enriching and chunking logic as the knowledge base.
self.document_enricher = self._enrich_documents
self.chunker = self._create_chunks_from_documents
self.retriever: EnsembleRetriever | None = None
self.page_map: Dict[int, Dict] = {}
self.source_filepath = ""
# Create necessary directories from config
Path(self.config["IMAGE_DIR"]).mkdir(parents=True, exist_ok=True)
Path(self.config["CHROMA_PERSIST_DIR"]).mkdir(parents=True, exist_ok=True)
def _get_default_config(self):
"""Returns the default configuration for the KnowledgeBase."""
return {
"IMAGE_DIR": Path("processed_figures_kb/"),
"CHROMA_PERSIST_DIR": Path("chroma_db_store/"),
"MEDICAL_ENTITY_TYPES_TO_EXTRACT": ["PROBLEM"],
"EXTRACT_IMAGE_SUMMARIES": False, # Disabled as we don't load the LLM here
"FILTER_FIRST_PAGES": 6,
"FIGURE_MIN_WIDTH": 30,
"FIGURE_MIN_HEIGHT": 30,
"SENTENCE_CHUNK_SIZE": 250,
"CHUNK_FILTER_SIZE": 20,
"RETRIEVER_TOP_K": 20,
"ENSEMBLE_WEIGHTS_BM25,SENTENCE,NER": [0.2, 0.3, 0.5],
"SENTENCE_SCORE_THRESHOLD": 0.6,
"NER_SCORE_THRESHOLD": 0.5,
"MAX_PARALLEL_WORKERS": 16,
}
def build(self, pdf_filepath: str):
"""The main public method to build the knowledge base from a PDF."""
logger.info(f"--------- Building Knowledge Base from '{pdf_filepath}' ---------")
pdf_path = Path(pdf_filepath)
if not pdf_path.exists():
logger.error(f"ERROR: PDF file not found at {pdf_filepath}")
return None
self.source_filepath = pdf_path
# Step 1: Process the PDF and build the structured page_map.
self.page_map = self._process_and_structure_pdf(pdf_path)
all_docs = [
doc for page_data in self.page_map.values() for doc in page_data["blocks"]
]
# Step 2: Enrich documents with NER metadata.
enriched_docs = self._enrich_documents(all_docs, self.config.get("EXTRACT_IMAGE_SUMMARIES", False))
# Step 3: Chunk the enriched documents into final searchable units.
final_chunks = self._create_chunks_from_documents(enriched_docs)
# Step 4: Build the final ensemble retriever.
self.retriever = self._build_ensemble_retriever(final_chunks)
if self.retriever:
logger.info(f"--------- Knowledge Base Built Successfully ---------")
else:
logger.error(f"--------- Knowledge Base Building Failed ---------")
return self
# --- Step 1: PDF Content Extraction ---
def _process_and_structure_pdf(self, pdf_path: Path) -> dict:
"""Processes a PDF in parallel and directly builds the final page_map.
This version is more efficient by opening the PDF only once.
"""
logger.info("Step 1: Processing PDF and building structured page map...")
page_map = {}
try:
# Improvement: Open the PDF ONCE to get all preliminary info
with fitz.open(pdf_path) as doc:
pdf_bytes_buffer = doc.write()
page_count = len(doc)
toc = doc.get_toc()
# Improvement: Create a more robust chapter lookup map
page_to_chapter_id = {}
if toc:
chapters = [item for item in toc if item[0] == 1]
for i, (lvl, title, start_page) in enumerate(chapters):
end_page = (
chapters[i + 1][2] - 1 if i + 1 < len(chapters) else page_count
)
for page_num in range(start_page, end_page + 1):
page_to_chapter_id[page_num] = i
# Create tasks for the thread pool (using a tuple as requested)
tasks = [
(
pdf_bytes_buffer,
i,
self.config,
pdf_path.name,
page_to_chapter_id,
)
for i in range(self.config["FILTER_FIRST_PAGES"], page_count)
]
# Parallel Processing
num_workers = min(
self.config["MAX_PARALLEL_WORKERS"], os.cpu_count() or 1
)
with concurrent.futures.ThreadPoolExecutor(
max_workers=num_workers
) as executor:
futures = [
executor.submit(self.process_single_page, task) for task in tasks
]
progress_bar = tqdm(
concurrent.futures.as_completed(futures),
total=len(tasks),
desc="Processing & Structuring Pages",
)
for future in progress_bar:
result = future.result()
if result:
# The worker now returns a fully formed dictionary for the page_map
page_map[result["page_num"]] = result["content"]
except Exception as e:
logger.error(f"❌ Failed to process PDF {pdf_path.name}: {e}")
return {}
logger.info(f"✅ PDF processed. Created a map of {len(page_map)} pages.")
return dict(sorted(page_map.items()))
# --- Step 2: Document Enrichment ---
def _enrich_documents(
self, docs: List[LangchainDocument], summarize: bool = False
) -> List[LangchainDocument]:
"""Enriches a list of documents with NER metadata and image summaries."""
logger.info("\nStep 2: Enriching documents...")
# NER Enrichment
if self.ner_pipeline:
logger.info("Adding NER metadata...")
for doc in tqdm(docs, desc="Enriching with NER"):
# 1. Skip documents that have no actual text content
if not doc.page_content or not doc.page_content.strip():
continue
try:
# 2. Process ONLY the text of the current document
processed_doc = self.ner_pipeline(doc.page_content)
# 3. Extract entities from the result. This result now
# unambiguously belongs to the current 'doc'.
entities = [
ent.text
for ent in processed_doc.ents
if ent.type in self.config["MEDICAL_ENTITY_TYPES_TO_EXTRACT"]
]
# 4. Assign the correctly mapped entities to the document's metadata
if entities:
# Using set() handles duplicates before sorting and joining
unique_entities = sorted(list(set(entities)))
doc.metadata["block_ner_entities"] = ", ".join(unique_entities)
except Exception as e:
# Add error handling for robustness in case a single block fails
logger.warning(
f"\nWarning: Could not process NER for a block on page {doc.metadata.get('page_number', 'N/A')}: {e}")
# Image Summary Enrichment
if summarize:
logger.info("Generating image summaries...")
docs_with_figures = [
doc for doc in docs if "linked_figure_path" in doc.metadata
]
for doc in tqdm(docs_with_figures, desc="Summarizing Images"):
try:
img = Image.open(doc.metadata["linked_figure_path"]).convert("RGB")
summary = self._summarize_image(img)
if summary:
doc.metadata["image_summary"] = summary
except Exception as e:
logger.warning(
"Warning: Could not summarize image"
f" {doc.metadata.get('linked_figure_path', '')}: {e}"
)
return docs
def _summarize_image(self, pil_image: Image.Image) -> str:
"""Helper method to call the LLM for image summarization."""
if not self.llm_pipeline:
return ""
messages = [{
"role": "user",
"content": [
{"type": "text", "text": IMAGE_SUMMARY_PROMPT},
{"type": "image", "image": pil_image},
],
}]
try:
output = self.llm_pipeline(text=messages, max_new_tokens=150)
return output[0]["generated_text"][-1]["content"].strip()
except Exception:
return ""
# --- Step 3: Document Chunking ---
def _create_chunks_from_documents(
self, enriched_docs: List[LangchainDocument], display_results: bool = True
) -> List[LangchainDocument]:
"""Takes enriched documents and creates the final list of chunks for indexing.
This method now has a single responsibility: chunking.
"""
if display_results:
logger.info("\nStep 3: Creating final chunks...")
# Sentence Splitting
if display_results:
logger.info("Applying NLTK Sentence Splitting...")
splitter = NLTKTextSplitter(chunk_size=self.config["SENTENCE_CHUNK_SIZE"])
sentence_chunks = splitter.split_documents(enriched_docs)
if display_results:
logger.info(f"Generated {len(sentence_chunks)} sentence-level chunks.")
# NER Entity Chunking (based on previously enriched metadata)
if display_results:
logger.info("Creating NER Entity Chunks...")
ner_entity_chunks = [
LangchainDocument(
page_content=entity,
metadata={**doc.metadata, "chunk_type": "ner_entity_standalone"},
)
for doc in enriched_docs
if (entities_str := doc.metadata.get("block_ner_entities"))
for entity in entities_str.split(", ")
if entity
]
if display_results:
logger.info(f"Added {len(ner_entity_chunks)} NER entity chunks.")
all_chunks = sentence_chunks + ner_entity_chunks
return [chunk for chunk in all_chunks if chunk.page_content]
# --- Step 4: Retriever Building ---
def _build_ensemble_retriever(
self, chunks: List[LangchainDocument]
) -> EnsembleRetriever | None:
"""Builds the final ensemble retriever from the chunks.
This method was already well-focused.
"""
if not chunks:
logger.error("No chunks to build retriever from.")
return None
logger.info("\nStep 4: Building specialized retrievers...")
sentence_chunks = [
doc
for doc in chunks
if doc.metadata.get("chunk_type") != "ner_entity_standalone"
]
ner_chunks = [
doc
for doc in chunks
if doc.metadata.get("chunk_type") == "ner_entity_standalone"
]
retrievers, weights = [], []
if sentence_chunks:
bm25_retriever = BM25Retriever.from_documents(sentence_chunks)
bm25_retriever.k = self.config["RETRIEVER_TOP_K"]
retrievers.append(bm25_retriever)
weights.append(self.config["ENSEMBLE_WEIGHTS_BM25,SENTENCE,NER"][0])
sentence_vs = Chroma.from_documents(
documents=sentence_chunks,
embedding=self.embedder,
persist_directory=str(
self.config["CHROMA_PERSIST_DIR"] / "sentences"
),
)
vector_retriever = sentence_vs.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={
"k": self.config["RETRIEVER_TOP_K"],
"score_threshold": self.config["SENTENCE_SCORE_THRESHOLD"],
},
)
retrievers.append(vector_retriever)
weights.append(self.config["ENSEMBLE_WEIGHTS_BM25,SENTENCE,NER"][1])
if ner_chunks:
ner_vs = Chroma.from_documents(
documents=ner_chunks,
embedding=self.embedder,
persist_directory=str(self.config["CHROMA_PERSIST_DIR"] / "entities"),
)
ner_retriever = ner_vs.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={
"k": self.config["RETRIEVER_TOP_K"],
"score_threshold": self.config["NER_SCORE_THRESHOLD"],
},
)
retrievers.append(ner_retriever)
weights.append(self.config["ENSEMBLE_WEIGHTS_BM25,SENTENCE,NER"][2])
if not retrievers:
logger.error("⚠️ Could not create any retrievers.")
return None
logger.info(f"Creating final ensemble with weights: {weights}")
return EnsembleRetriever(retrievers=retrievers, weights=weights)
@staticmethod
def process_single_page(args_tuple: tuple) -> dict | None:
"""Worker function for parallel PDF processing.
Processes one page and returns a structured dictionary for that page.
"""
# Unpack arguments (still using a tuple as requested)
pdf_bytes_buffer, page_num_idx, config, pdf_filename, page_to_chapter_id = (
args_tuple
)
lc_documents = []
page_num = page_num_idx + 1
try:
# Improvement: Use a 'with' statement for resource management
with fitz.open(stream=pdf_bytes_buffer, filetype="pdf") as doc:
page = doc[page_num_idx]
# 1. Extract raw, potentially fragmented text blocks
raw_text_blocks = page.get_text("blocks", sort=True)
# 2. Immediately merge blocks into paragraphs >>>
paragraph_blocks = KnowledgeBase._merge_text_blocks(raw_text_blocks)
# 3. Process figures (no change)
page_figures = []
for fig_j, path_dict in enumerate(page.get_drawings()):
bbox = path_dict["rect"]
if (
bbox.is_empty
or bbox.width < config["FIGURE_MIN_WIDTH"]
or bbox.height < config["FIGURE_MIN_HEIGHT"]
):
continue
# Improvement: More concise bounding box padding
padded_bbox = bbox + (-2, -2, 2, 2)
padded_bbox.intersect(page.rect)
if padded_bbox.is_empty:
continue
pix = page.get_pixmap(clip=padded_bbox, dpi=150)
if pix.width > 0 and pix.height > 0:
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
img_path = (
config["IMAGE_DIR"]
/ f"{Path(pdf_filename).stem}_p{page_num}_fig{fig_j + 1}.png"
)
img.save(img_path)
page_figures.append({
"bbox": bbox,
"path": str(img_path),
"id": f"Figure {fig_j + 1} on {pdf_filename}, page {page_num}",
})
# 4. Process the clean PARAGRAPH blocks
text_blocks_on_page = [
{
"bbox": fitz.Rect(x0, y0, x1, y1),
"text": text.strip(),
"original_idx": b_idx,
}
for b_idx, (x0, y0, x1, y1, text, _, _) in enumerate(
paragraph_blocks
)
if text.strip()
]
# 5. Link captions and create documents
potential_captions = [
b
for b in text_blocks_on_page
if re.match(r"^\s*Figure\s*\d+", b["text"], re.I)
]
mapped_caption_indices = set()
for fig_data in page_figures:
cap_text, cap_idx = KnowledgeBase.find_best_caption_for_figure(
fig_data["bbox"], potential_captions
)
if cap_text and cap_idx not in mapped_caption_indices:
mapped_caption_indices.add(cap_idx)
metadata = {
"source_pdf": pdf_filename,
"page_number": page_num,
"chunk_type": "figure-caption",
"linked_figure_path": fig_data["path"],
"linked_figure_id": fig_data["id"],
"block_id": f"{page_num}_{cap_idx}",
"original_block_text": cap_text,
}
lc_documents.append(
LangchainDocument(page_content=cap_text, metadata=metadata)
)
for block_data in text_blocks_on_page:
if block_data["original_idx"] in mapped_caption_indices:
continue
if KnowledgeBase.should_filter_text_block(
block_data["text"],
block_data["bbox"],
page.rect.height,
config["CHUNK_FILTER_SIZE"],
):
continue
metadata = {
"source_pdf": pdf_filename,
"page_number": page_num,
"chunk_type": "text_block",
"block_id": f"{page_num}_{block_data['original_idx']}",
"original_block_text": block_data["text"],
}
lc_documents.append(
LangchainDocument(
page_content=block_data["text"], metadata=metadata
)
)
except Exception as e:
logger.error(f"Error processing {pdf_filename} page {page_num}: {e}")
return None
if not lc_documents:
return None
# Structure the final output
lc_documents.sort(
key=lambda d: int(d.metadata.get("block_id", "0_0").split("_")[-1])
)
return {
"page_num": page_num,
"content": {
"chapter_id": page_to_chapter_id.get(page_num, -1),
"blocks": lc_documents,
},
}
@staticmethod
def _merge_text_blocks(blocks: list) -> list:
"""Intelligently merges fragmented text blocks into coherent paragraphs."""
if not blocks:
return []
merged_blocks = []
current_text = ""
current_bbox = fitz.Rect()
sentence_enders = {".", "?", "!", "•"}
for i, block in enumerate(blocks):
block_text = block[4].strip()
if not current_text: # Starting a new paragraph
current_bbox = fitz.Rect(block[:4])
current_text = block_text
else: # Continue existing paragraph
current_bbox.include_rect(block[:4])
current_text = f"{current_text} {block_text}"
is_last_block = i == len(blocks) - 1
ends_with_punctuation = block_text.endswith(tuple(sentence_enders))
if ends_with_punctuation or is_last_block:
merged_blocks.append((
current_bbox.x0,
current_bbox.y0,
current_bbox.x1,
current_bbox.y1,
current_text,
len(merged_blocks),
0,
))
current_text = ""
return merged_blocks
@staticmethod
def should_filter_text_block(
block_text: str,
block_bbox: fitz.Rect,
page_height: float,
filter_size: int,
) -> bool:
"""Determines if a text block from a header/footer should be filtered out."""
is_in_header_area = block_bbox.y0 < (page_height * 0.10)
is_in_footer_area = block_bbox.y1 > (page_height * 0.80)
is_short_text = len(block_text) < filter_size
return (is_in_header_area or is_in_footer_area) and is_short_text
@staticmethod
def find_best_caption_for_figure(
figure_bbox: fitz.Rect, potential_captions_on_page: list
) -> tuple:
"""Finds the best caption for a given figure based on proximity and alignment."""
best_caption_info = (None, -1)
min_score = float("inf")
for cap_info in potential_captions_on_page:
cap_bbox = cap_info["bbox"]
# Heuristic: Score captions directly below the figure
if cap_bbox.y0 >= figure_bbox.y1 - 10: # Caption starts below the figure
vertical_dist = cap_bbox.y0 - figure_bbox.y1
# Calculate horizontal overlap
overlap_x_start = max(figure_bbox.x0, cap_bbox.x0)
overlap_x_end = min(figure_bbox.x1, cap_bbox.x1)
if (
overlap_x_end - overlap_x_start
) > 0: # If they overlap horizontally
fig_center_x = (figure_bbox.x0 + figure_bbox.x1) / 2
cap_center_x = (cap_bbox.x0 + cap_bbox.x1) / 2
horizontal_center_dist = abs(fig_center_x - cap_center_x)
# Score is a combination of vertical and horizontal distance
score = vertical_dist + (horizontal_center_dist * 0.5)
if score < min_score:
min_score = score
best_caption_info = (cap_info["text"], cap_info["original_idx"])
return best_caption_info
|