Spaces:
Build error
Build error
| import gradio as gr | |
| from matplotlib import gridspec | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from PIL import Image | |
| import tensorflow as tf | |
| from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation | |
| feature_extractor = SegformerFeatureExtractor.from_pretrained( | |
| "prem-timsina/segformer-b0-finetuned-food", from_pt=True | |
| ) | |
| model = TFSegformerForSemanticSegmentation.from_pretrained( | |
| "prem-timsina/segformer-b0-finetuned-food", from_pt=True | |
| ) | |
| def ade_palette(): | |
| """ADE20K palette that maps each class to RGB values.""" | |
| return [ | |
| [93, 93, 93], | |
| [43, 240, 132], | |
| [139, 136, 240], | |
| [158, 83, 109], | |
| [6, 76, 151], | |
| [95, 170, 87], | |
| [273, 236, 139], | |
| [21, 155, 160], | |
| [188, 220, 166], | |
| [238, 96, 247], | |
| [223, 180, 221], | |
| [29, 97, 24], | |
| [3, 233, 248], | |
| [105, 118, 44], | |
| [203, 237, 63], | |
| [234, 100, 240], | |
| [19, 179, 164], | |
| [65, 22, 115], | |
| [111, 128, 194], | |
| [232, 41, 17], | |
| [11, 250, 159], | |
| [137, 163, 129], | |
| [212, 223, 210], | |
| [51, 37, 4], | |
| [37, 63, 239], | |
| [257, 180, 163], | |
| [172, 53, 105], | |
| [104, 150, 99], | |
| [80, 157, 133], | |
| [195, 104, 202], | |
| [42, 187, 110], | |
| [133, 225, 66], | |
| [132, 99, 213], | |
| [178, 248, 209], | |
| [93, 147, 60], | |
| [105, 109, 115], | |
| [26, 65, 115], | |
| [239, 52, 182], | |
| [242, 19, 204], | |
| [157, 101, 214], | |
| [248, 85, 198], | |
| [103, 198, 171], | |
| [44, 129, 75], | |
| [159, 32, 120], | |
| [155, 77, 71], | |
| [233, 231, 155], | |
| [135, 196, 206], | |
| [81, 53, 51], | |
| [134, 221, 213], | |
| [192, 27, 152], | |
| [127, 127, 194], | |
| [82, 161, 1], | |
| [71, 80, 161], | |
| [148, 9, 159], | |
| [91, 110, 124], | |
| [127, 157, 223], | |
| [25, 210, 232], | |
| [129, 0, 114], | |
| [231, 187, 138], | |
| [23, 17, 224], | |
| [25, 255, 29], | |
| [158, 19, 53], | |
| [157, 190, 176], | |
| [114, 140, 221], | |
| [46, 104, 87], | |
| [17, 114, 122], | |
| [221, 12, 229], | |
| [54, 20, 92], | |
| [215, 191, 252], | |
| [144, 127, 146], | |
| [141, 116, 77], | |
| [100, 89, 89], | |
| [104, 115, 249], | |
| [179, 212, 38], | |
| [140, 248, 179], | |
| [177, 230, 240], | |
| [219, 98, 8], | |
| [74, 219, 53], | |
| [161, 28, 243], | |
| [64, 57, 184], | |
| [147, 193, 113], | |
| [182, 15, 30], | |
| [151, 204, 109], | |
| [187, 76, 21], | |
| [118, 163, 155], | |
| [158, 30, 220], | |
| [227, 170, 63], | |
| [199, 186, 72], | |
| [0, 241, 168], | |
| [80, 150, 225], | |
| [237, 250, 4], | |
| [29, 210, 181], | |
| [176, 120, 81], | |
| [134, 47, 123], | |
| [240, 141, 130], | |
| [250, 41, 115], | |
| [29, 88, 143], | |
| [66, 151, 87], | |
| [241, 231, 144], | |
| [238, 107, 153], | |
| [181, 96, 220], | |
| [239, 122, 133], | |
| [205, 120, 21], | |
| [168, 12, 77], | |
| ] | |
| labels_list = [] | |
| with open(r'labels.txt', 'r') as fp: | |
| for line in fp: | |
| labels_list.append(line[:-1]) | |
| colormap = np.asarray(ade_palette()) | |
| def label_to_color_image(label): | |
| if label.ndim != 2: | |
| raise ValueError("Expect 2-D input label") | |
| if np.max(label) >= len(colormap): | |
| raise ValueError("label value too large.") | |
| return colormap[label] | |
| def draw_plot(pred_img, seg): | |
| fig = plt.figure(figsize=(20, 15)) | |
| grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) | |
| plt.subplot(grid_spec[0]) | |
| plt.imshow(pred_img) | |
| plt.axis('off') | |
| LABEL_NAMES = np.asarray(labels_list) | |
| FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) | |
| FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) | |
| unique_labels = np.unique(seg.numpy().astype("uint8")) | |
| ax = plt.subplot(grid_spec[1]) | |
| plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") | |
| ax.yaxis.tick_right() | |
| plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) | |
| plt.xticks([], []) | |
| ax.tick_params(width=0.0, labelsize=25) | |
| return fig | |
| def sepia(input_img): | |
| input_img = Image.fromarray(input_img) | |
| inputs = feature_extractor(images=input_img, return_tensors="tf") | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| logits = tf.transpose(logits, [0, 2, 3, 1]) | |
| logits = tf.image.resize( | |
| logits, input_img.size[::-1] | |
| ) # We reverse the shape of `image` because `image.size` returns width and height. | |
| seg = tf.math.argmax(logits, axis=-1)[0] | |
| color_seg = np.zeros( | |
| (seg.shape[0], seg.shape[1], 3), dtype=np.uint8 | |
| ) # height, width, 3 | |
| for label, color in enumerate(colormap): | |
| color_seg[seg.numpy() == label, :] = color | |
| # Show image + mask | |
| pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 | |
| pred_img = pred_img.astype(np.uint8) | |
| fig = draw_plot(pred_img, seg) | |
| return fig | |
| demo = gr.Interface(fn=sepia, | |
| inputs=gr.Image(shape=(400, 600)), | |
| outputs=['plot'], | |
| examples=["food-1.jpg","food-2.jpg", "food-3.jpg", "food-4.jpg", "food-5.jpg", "food-6.jpg"], | |
| allow_flagging='never') | |
| demo.launch() | |