import gradio as gr from transformers import MBartForConditionalGeneration, MBart50Tokenizer, AutoModelForCausalLM, AutoTokenizer, pipeline from diffusers import DiffusionPipeline import torch from PIL import Image # Load the Translation Model (MBART for Tamil to English Translation) model_name = "facebook/mbart-large-50-many-to-one-mmt" tokenizer = MBart50Tokenizer.from_pretrained(model_name) model = MBartForConditionalGeneration.from_pretrained(model_name) # Load the Text Generation Model (for generating a short paragraph) text_generation_model_name = "EleutherAI/gpt-neo-1.3B" text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name) text_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name) text_generator = pipeline("text-generation", model=text_model, tokenizer=text_tokenizer) # Load the Stable Diffusion XL Model for Image Generation in full precision (fp32) pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", # Remove torch_dtype and variant for CPU-friendly precision ) # Check if GPU is available and use it for inference if torch.cuda.is_available(): pipe.to("cuda") # Use GPU for faster inference else: pipe.to("cpu") # Use CPU if GPU is not available # Function to generate image from text prompt using Stable Diffusion XL def generate_image_from_text(translated_text): try: print(f"Generating image from translated text: {translated_text}") # Generate the image using the pipeline image = pipe(prompt=translated_text).images[0] print("Image generation completed.") return image except Exception as e: print(f"Error during image generation: {e}") return None # Function to generate a short paragraph from the translated text def generate_short_paragraph_from_text(translated_text): try: print(f"Generating a short paragraph from translated text: {translated_text}") paragraph = text_generator( translated_text, max_length=80, # Reduced to 80 tokens num_return_sequences=1, temperature=0.6, top_p=0.8, truncation=True # Added truncation to avoid long sequences )[0]['generated_text'] print(f"Paragraph generation completed: {paragraph}") return paragraph except Exception as e: print(f"Error during paragraph generation: {e}") return f"Error during paragraph generation: {e}" # Function to translate Tamil text, generate a short paragraph, and create an image def translate_generate_paragraph_and_image(tamil_text): # Step 1: Translate Tamil text to English using mbart-large-50 try: print("Translating Tamil text to English...") tokenizer.src_lang = "ta_IN" inputs = tokenizer(tamil_text, return_tensors="pt") translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]) translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] print(f"Translation completed: {translated_text}") except Exception as e: return f"Error during translation: {e}", "", None # Step 2: Generate a shorter paragraph based on the translated English text paragraph = generate_short_paragraph_from_text(translated_text) if "Error" in paragraph: return translated_text, paragraph, None # Step 3: Generate an image using the translated English text with the new model image = generate_image_from_text(translated_text) return translated_text, paragraph, image # Define Gradio Interface def interface(tamil_text): translated_text, paragraph, image = translate_generate_paragraph_and_image(tamil_text) return translated_text, paragraph, image # Create Gradio Interface (with the image output) iface = gr.Interface( fn=interface, inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."), outputs=[ gr.Textbox(label="Translated Text"), gr.Textbox(label="Generated Paragraph"), gr.Image(type="pil", label="Generated Image") ], title="Tamil Text Translation, Paragraph Generation, and Image Generation", description="Input Tamil text, and this tool will translate it, generate a short paragraph, and create an image based on the translated text." ) # Launch the Gradio app with share=True to create a shareable link iface.launch(share=True)