Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import MBartForConditionalGeneration, MBart50Tokenizer, AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
+
from diffusers import DiffusionPipeline
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Load the Translation Model (MBART for Tamil to English Translation)
|
8 |
+
model_name = "facebook/mbart-large-50-many-to-one-mmt"
|
9 |
+
tokenizer = MBart50Tokenizer.from_pretrained(model_name)
|
10 |
+
model = MBartForConditionalGeneration.from_pretrained(model_name)
|
11 |
+
|
12 |
+
# Load the Text Generation Model (for generating a short paragraph)
|
13 |
+
text_generation_model_name = "EleutherAI/gpt-neo-1.3B"
|
14 |
+
text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
|
15 |
+
text_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name)
|
16 |
+
text_generator = pipeline("text-generation", model=text_model, tokenizer=text_tokenizer)
|
17 |
+
|
18 |
+
# Load the Stable Diffusion XL Model for Image Generation
|
19 |
+
pipe = DiffusionPipeline.from_pretrained(
|
20 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
21 |
+
torch_dtype=torch.float16,
|
22 |
+
variant="fp16",
|
23 |
+
)
|
24 |
+
pipe.to("cuda") # Send the model to GPU for faster image generation
|
25 |
+
|
26 |
+
# Function to generate image from text prompt using Stable Diffusion XL
|
27 |
+
def generate_image_from_text(translated_text):
|
28 |
+
try:
|
29 |
+
print(f"Generating image from translated text: {translated_text}")
|
30 |
+
# Generate the image using the pipeline
|
31 |
+
image = pipe(prompt=translated_text).images[0]
|
32 |
+
print("Image generation completed.")
|
33 |
+
return image
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Error during image generation: {e}")
|
36 |
+
return None
|
37 |
+
|
38 |
+
# Function to generate a short paragraph from the translated text
|
39 |
+
def generate_short_paragraph_from_text(translated_text):
|
40 |
+
try:
|
41 |
+
print(f"Generating a short paragraph from translated text: {translated_text}")
|
42 |
+
paragraph = text_generator(
|
43 |
+
translated_text,
|
44 |
+
max_length=80, # Reduced to 80 tokens
|
45 |
+
num_return_sequences=1,
|
46 |
+
temperature=0.6,
|
47 |
+
top_p=0.8,
|
48 |
+
truncation=True # Added truncation to avoid long sequences
|
49 |
+
)[0]['generated_text']
|
50 |
+
print(f"Paragraph generation completed: {paragraph}")
|
51 |
+
return paragraph
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error during paragraph generation: {e}")
|
54 |
+
return f"Error during paragraph generation: {e}"
|
55 |
+
|
56 |
+
# Function to translate Tamil text, generate a short paragraph, and create an image
|
57 |
+
def translate_generate_paragraph_and_image(tamil_text):
|
58 |
+
# Step 1: Translate Tamil text to English using mbart-large-50
|
59 |
+
try:
|
60 |
+
print("Translating Tamil text to English...")
|
61 |
+
tokenizer.src_lang = "ta_IN"
|
62 |
+
inputs = tokenizer(tamil_text, return_tensors="pt")
|
63 |
+
translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
|
64 |
+
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
65 |
+
print(f"Translation completed: {translated_text}")
|
66 |
+
except Exception as e:
|
67 |
+
return f"Error during translation: {e}", "", None
|
68 |
+
|
69 |
+
# Step 2: Generate a shorter paragraph based on the translated English text
|
70 |
+
paragraph = generate_short_paragraph_from_text(translated_text)
|
71 |
+
if "Error" in paragraph:
|
72 |
+
return translated_text, paragraph, None
|
73 |
+
|
74 |
+
# Step 3: Generate an image using the translated English text with the new model
|
75 |
+
image = generate_image_from_text(translated_text)
|
76 |
+
|
77 |
+
return translated_text, paragraph, image
|
78 |
+
|
79 |
+
# Define Gradio Interface
|
80 |
+
def interface(tamil_text):
|
81 |
+
translated_text, paragraph, image = translate_generate_paragraph_and_image(tamil_text)
|
82 |
+
return translated_text, paragraph, image
|
83 |
+
|
84 |
+
# Create Gradio Interface (with the image output)
|
85 |
+
iface = gr.Interface(
|
86 |
+
fn=interface,
|
87 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."),
|
88 |
+
outputs=[
|
89 |
+
gr.Textbox(label="Translated Text"),
|
90 |
+
gr.Textbox(label="Generated Paragraph"),
|
91 |
+
gr.Image(type="pil", label="Generated Image")
|
92 |
+
],
|
93 |
+
title="Tamil Text Translation, Paragraph Generation, and Image Generation",
|
94 |
+
description="Input Tamil text, and this tool will translate it, generate a short paragraph, and create an image based on the translated text."
|
95 |
+
)
|
96 |
+
|
97 |
+
# Launch the Gradio app
|
98 |
+
iface.launch()
|