Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ import requests
|
|
4 |
import io
|
5 |
from PIL import Image
|
6 |
import os
|
7 |
-
import time
|
8 |
|
9 |
# Load the translation model and tokenizer
|
10 |
model_name = "facebook/mbart-large-50-many-to-one-mmt"
|
@@ -18,15 +17,15 @@ if hf_api_key is None:
|
|
18 |
else:
|
19 |
headers = {"Authorization": f"Bearer {hf_api_key}"}
|
20 |
|
21 |
-
# Define the text-to-image model URL (using a
|
22 |
API_URL = "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4"
|
23 |
|
24 |
-
# Load
|
25 |
-
text_generation_model_name = "EleutherAI/gpt-neo-
|
26 |
text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
|
27 |
text_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name)
|
28 |
|
29 |
-
# Create a pipeline for text generation
|
30 |
text_generator = pipeline("text-generation", model=text_model, tokenizer=text_tokenizer)
|
31 |
|
32 |
# Function to generate an image using Hugging Face's text-to-image model
|
@@ -49,19 +48,19 @@ def generate_image_from_text(translated_text):
|
|
49 |
print(f"Error during image generation: {e}")
|
50 |
return None, f"Error during image generation: {e}"
|
51 |
|
52 |
-
# Function to generate a
|
53 |
-
def
|
54 |
try:
|
55 |
-
print(f"Generating paragraph from translated text: {translated_text}")
|
56 |
-
# Generate
|
57 |
-
paragraph = text_generator(translated_text, max_length=
|
58 |
print(f"Paragraph generation completed: {paragraph}")
|
59 |
return paragraph
|
60 |
except Exception as e:
|
61 |
print(f"Error during paragraph generation: {e}")
|
62 |
return f"Error during paragraph generation: {e}"
|
63 |
|
64 |
-
# Define the function to translate Tamil text, generate a paragraph, and create an image
|
65 |
def translate_generate_paragraph_and_image(tamil_text):
|
66 |
# Step 1: Translate Tamil text to English using mbart-large-50
|
67 |
try:
|
@@ -74,8 +73,8 @@ def translate_generate_paragraph_and_image(tamil_text):
|
|
74 |
except Exception as e:
|
75 |
return f"Error during translation: {e}", "", None, None
|
76 |
|
77 |
-
# Step 2: Generate a
|
78 |
-
paragraph =
|
79 |
if "Error" in paragraph:
|
80 |
return translated_text, paragraph, None, None
|
81 |
|
@@ -91,11 +90,11 @@ iface = gr.Interface(
|
|
91 |
fn=translate_generate_paragraph_and_image,
|
92 |
inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."),
|
93 |
outputs=[gr.Textbox(label="Translated English Text"),
|
94 |
-
gr.Textbox(label="Generated
|
95 |
gr.Image(label="Generated Image")],
|
96 |
-
title="Tamil to English Translation, Paragraph Generation, and Image Creation",
|
97 |
-
description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate a
|
98 |
)
|
99 |
|
100 |
# Launch Gradio app without `share=True`
|
101 |
-
iface.launch()
|
|
|
4 |
import io
|
5 |
from PIL import Image
|
6 |
import os
|
|
|
7 |
|
8 |
# Load the translation model and tokenizer
|
9 |
model_name = "facebook/mbart-large-50-many-to-one-mmt"
|
|
|
17 |
else:
|
18 |
headers = {"Authorization": f"Bearer {hf_api_key}"}
|
19 |
|
20 |
+
# Define the text-to-image model URL (using a faster text-to-image model)
|
21 |
API_URL = "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4"
|
22 |
|
23 |
+
# Load a smaller text generation model to reduce generation time
|
24 |
+
text_generation_model_name = "EleutherAI/gpt-neo-1.3B"
|
25 |
text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
|
26 |
text_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name)
|
27 |
|
28 |
+
# Create a pipeline for text generation using the selected model
|
29 |
text_generator = pipeline("text-generation", model=text_model, tokenizer=text_tokenizer)
|
30 |
|
31 |
# Function to generate an image using Hugging Face's text-to-image model
|
|
|
48 |
print(f"Error during image generation: {e}")
|
49 |
return None, f"Error during image generation: {e}"
|
50 |
|
51 |
+
# Function to generate a shorter paragraph based on the translated text
|
52 |
+
def generate_short_paragraph_from_text(translated_text):
|
53 |
try:
|
54 |
+
print(f"Generating a short paragraph from translated text: {translated_text}")
|
55 |
+
# Generate a shorter paragraph from the translated text using smaller settings
|
56 |
+
paragraph = text_generator(translated_text, max_length=100, num_return_sequences=1, temperature=0.7, top_p=0.8)[0]['generated_text']
|
57 |
print(f"Paragraph generation completed: {paragraph}")
|
58 |
return paragraph
|
59 |
except Exception as e:
|
60 |
print(f"Error during paragraph generation: {e}")
|
61 |
return f"Error during paragraph generation: {e}"
|
62 |
|
63 |
+
# Define the function to translate Tamil text, generate a short paragraph, and create an image
|
64 |
def translate_generate_paragraph_and_image(tamil_text):
|
65 |
# Step 1: Translate Tamil text to English using mbart-large-50
|
66 |
try:
|
|
|
73 |
except Exception as e:
|
74 |
return f"Error during translation: {e}", "", None, None
|
75 |
|
76 |
+
# Step 2: Generate a shorter paragraph based on the translated English text
|
77 |
+
paragraph = generate_short_paragraph_from_text(translated_text)
|
78 |
if "Error" in paragraph:
|
79 |
return translated_text, paragraph, None, None
|
80 |
|
|
|
90 |
fn=translate_generate_paragraph_and_image,
|
91 |
inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."),
|
92 |
outputs=[gr.Textbox(label="Translated English Text"),
|
93 |
+
gr.Textbox(label="Generated Short Paragraph"),
|
94 |
gr.Image(label="Generated Image")],
|
95 |
+
title="Tamil to English Translation, Short Paragraph Generation, and Image Creation",
|
96 |
+
description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate a short paragraph, and create an image using the translated text.",
|
97 |
)
|
98 |
|
99 |
# Launch Gradio app without `share=True`
|
100 |
+
iface.launch()
|