Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import requests
|
|
5 |
import io
|
6 |
from PIL import Image
|
7 |
import os
|
|
|
8 |
|
9 |
# Set up your OpenAI API key (make sure it's stored as an environment variable)
|
10 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
@@ -19,7 +20,7 @@ tokenizer = MBart50Tokenizer.from_pretrained(model_name)
|
|
19 |
model = MBartForConditionalGeneration.from_pretrained(model_name)
|
20 |
|
21 |
# Use the Hugging Face API key from environment variables for text-to-image model
|
22 |
-
hf_api_key = os.getenv("
|
23 |
if hf_api_key is None:
|
24 |
raise ValueError("Hugging Face API key not found! Please set 'hf_token' environment variable.")
|
25 |
else:
|
@@ -30,6 +31,7 @@ API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
|
|
30 |
# Define the OpenAI GPT-3 text generation function with error handling
|
31 |
def generate_with_gpt3(prompt, max_tokens=150, temperature=0.7):
|
32 |
try:
|
|
|
33 |
response = openai.Completion.create(
|
34 |
engine="text-davinci-003", # Use "text-davinci-003" for high-quality outputs
|
35 |
prompt=prompt,
|
@@ -39,39 +41,53 @@ def generate_with_gpt3(prompt, max_tokens=150, temperature=0.7):
|
|
39 |
frequency_penalty=0.0,
|
40 |
presence_penalty=0.0
|
41 |
)
|
42 |
-
|
|
|
|
|
43 |
except Exception as e:
|
44 |
print(f"OpenAI API Error: {e}")
|
45 |
return "Error generating text with GPT-3. Check the OpenAI API settings."
|
46 |
|
47 |
# Define the translation, GPT-3 text generation, and image generation function
|
48 |
def translate_and_generate_image(tamil_text):
|
|
|
49 |
try:
|
50 |
-
|
51 |
tokenizer.src_lang = "ta_IN"
|
52 |
inputs = tokenizer(tamil_text, return_tensors="pt")
|
53 |
translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
|
54 |
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
|
|
55 |
except Exception as e:
|
56 |
return "Error during translation: " + str(e), "", None
|
57 |
|
|
|
|
|
|
|
|
|
58 |
try:
|
59 |
-
|
60 |
prompt = f"Create a detailed and creative description based on the following text: {translated_text}"
|
61 |
generated_text = generate_with_gpt3(prompt, max_tokens=150, temperature=0.7)
|
|
|
62 |
except Exception as e:
|
63 |
return translated_text, f"Error during text generation: {e}", None
|
64 |
|
|
|
|
|
|
|
|
|
65 |
try:
|
66 |
-
|
67 |
def query(payload):
|
68 |
response = requests.post(API_URL, headers=headers, json=payload)
|
69 |
response.raise_for_status() # Raise error if request fails
|
70 |
return response.content
|
71 |
|
72 |
-
# Generate image using the
|
73 |
image_bytes = query({"inputs": generated_text})
|
74 |
image = Image.open(io.BytesIO(image_bytes))
|
|
|
75 |
except Exception as e:
|
76 |
return translated_text, generated_text, f"Error during image generation: {e}"
|
77 |
|
|
|
5 |
import io
|
6 |
from PIL import Image
|
7 |
import os
|
8 |
+
import time # Importing time to add delays for sequential execution
|
9 |
|
10 |
# Set up your OpenAI API key (make sure it's stored as an environment variable)
|
11 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
|
20 |
model = MBartForConditionalGeneration.from_pretrained(model_name)
|
21 |
|
22 |
# Use the Hugging Face API key from environment variables for text-to-image model
|
23 |
+
hf_api_key = os.getenv("hf_token")
|
24 |
if hf_api_key is None:
|
25 |
raise ValueError("Hugging Face API key not found! Please set 'hf_token' environment variable.")
|
26 |
else:
|
|
|
31 |
# Define the OpenAI GPT-3 text generation function with error handling
|
32 |
def generate_with_gpt3(prompt, max_tokens=150, temperature=0.7):
|
33 |
try:
|
34 |
+
print("Generating text with GPT-3...")
|
35 |
response = openai.Completion.create(
|
36 |
engine="text-davinci-003", # Use "text-davinci-003" for high-quality outputs
|
37 |
prompt=prompt,
|
|
|
41 |
frequency_penalty=0.0,
|
42 |
presence_penalty=0.0
|
43 |
)
|
44 |
+
generated_text = response.choices[0].text.strip()
|
45 |
+
print("Text generation completed.")
|
46 |
+
return generated_text
|
47 |
except Exception as e:
|
48 |
print(f"OpenAI API Error: {e}")
|
49 |
return "Error generating text with GPT-3. Check the OpenAI API settings."
|
50 |
|
51 |
# Define the translation, GPT-3 text generation, and image generation function
|
52 |
def translate_and_generate_image(tamil_text):
|
53 |
+
# Step 1: Translate Tamil text to English using mbart-large-50
|
54 |
try:
|
55 |
+
print("Translating Tamil text to English...")
|
56 |
tokenizer.src_lang = "ta_IN"
|
57 |
inputs = tokenizer(tamil_text, return_tensors="pt")
|
58 |
translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
|
59 |
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
60 |
+
print(f"Translation completed: {translated_text}")
|
61 |
except Exception as e:
|
62 |
return "Error during translation: " + str(e), "", None
|
63 |
|
64 |
+
# Ensure sequential flow by waiting before moving to the next step
|
65 |
+
time.sleep(1) # Optional: Add a small delay to ensure proper execution order
|
66 |
+
|
67 |
+
# Step 2: Generate high-quality descriptive text using OpenAI's GPT-3
|
68 |
try:
|
69 |
+
print("Generating descriptive text from translated English text...")
|
70 |
prompt = f"Create a detailed and creative description based on the following text: {translated_text}"
|
71 |
generated_text = generate_with_gpt3(prompt, max_tokens=150, temperature=0.7)
|
72 |
+
print(f"Text generation completed: {generated_text}")
|
73 |
except Exception as e:
|
74 |
return translated_text, f"Error during text generation: {e}", None
|
75 |
|
76 |
+
# Ensure sequential flow by waiting before moving to the next step
|
77 |
+
time.sleep(1) # Optional: Add a small delay to ensure proper execution order
|
78 |
+
|
79 |
+
# Step 3: Use the generated English text to create an image
|
80 |
try:
|
81 |
+
print("Generating image from the generated descriptive text...")
|
82 |
def query(payload):
|
83 |
response = requests.post(API_URL, headers=headers, json=payload)
|
84 |
response.raise_for_status() # Raise error if request fails
|
85 |
return response.content
|
86 |
|
87 |
+
# Generate image using the descriptive text
|
88 |
image_bytes = query({"inputs": generated_text})
|
89 |
image = Image.open(io.BytesIO(image_bytes))
|
90 |
+
print("Image generation completed.")
|
91 |
except Exception as e:
|
92 |
return translated_text, generated_text, f"Error during image generation: {e}"
|
93 |
|