gokilashree commited on
Commit
3782eb8
·
verified ·
1 Parent(s): 37409eb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -28
app.py CHANGED
@@ -7,7 +7,11 @@ from PIL import Image
7
  import os
8
 
9
  # Set up your OpenAI API key (make sure it's stored as an environment variable)
10
- openai.api_key = os.getenv("OPENAI_API_KEY")
 
 
 
 
11
 
12
  # Load the translation model and tokenizer
13
  model_name = "facebook/mbart-large-50-many-to-one-mmt"
@@ -15,42 +19,61 @@ tokenizer = MBart50Tokenizer.from_pretrained(model_name)
15
  model = MBartForConditionalGeneration.from_pretrained(model_name)
16
 
17
  # Use the Hugging Face API key from environment variables for text-to-image model
 
 
 
 
 
 
18
  API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
19
- headers = {"Authorization": f"Bearer {os.getenv('full_token')}"}
20
 
21
- # Define the OpenAI GPT-3 text generation function
22
  def generate_with_gpt3(prompt, max_tokens=150, temperature=0.7):
23
- response = openai.Completion.create(
24
- engine="text-davinci-003", # You can also use "text-davinci-002" or "curie"
25
- prompt=prompt,
26
- max_tokens=max_tokens,
27
- temperature=temperature,
28
- top_p=0.9,
29
- frequency_penalty=0.0,
30
- presence_penalty=0.0
31
- )
32
- return response.choices[0].text.strip()
 
 
 
 
33
 
34
  # Define the translation, GPT-3 text generation, and image generation function
35
  def translate_and_generate_image(tamil_text):
36
- # Step 1: Translate Tamil text to English using mbart-large-50
37
- tokenizer.src_lang = "ta_IN"
38
- inputs = tokenizer(tamil_text, return_tensors="pt")
39
- translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
40
- translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
 
 
 
41
 
42
- # Step 2: Generate high-quality descriptive text using OpenAI's GPT-3
43
- prompt = f"Create a detailed and creative description based on the following text: {translated_text}"
44
- generated_text = generate_with_gpt3(prompt, max_tokens=150, temperature=0.7)
 
 
 
45
 
46
- # Step 3: Use the generated English text to create an image
47
- def query(payload):
48
- response = requests.post(API_URL, headers=headers, json=payload)
49
- return response.content
 
 
50
 
51
- # Generate image using the generated text
52
- image_bytes = query({"inputs": generated_text})
53
- image = Image.open(io.BytesIO(image_bytes))
 
 
54
 
55
  return translated_text, generated_text, image
56
 
 
7
  import os
8
 
9
  # Set up your OpenAI API key (make sure it's stored as an environment variable)
10
+ openai_api_key = os.getenv("OPENAI_API_KEY")
11
+ if openai_api_key is None:
12
+ raise ValueError("OpenAI API key not found! Please set 'OPENAI_API_KEY' environment variable.")
13
+ else:
14
+ openai.api_key = openai_api_key
15
 
16
  # Load the translation model and tokenizer
17
  model_name = "facebook/mbart-large-50-many-to-one-mmt"
 
19
  model = MBartForConditionalGeneration.from_pretrained(model_name)
20
 
21
  # Use the Hugging Face API key from environment variables for text-to-image model
22
+ hf_api_key = os.getenv("hf_token")
23
+ if hf_api_key is None:
24
+ raise ValueError("Hugging Face API key not found! Please set 'hf_token' environment variable.")
25
+ else:
26
+ headers = {"Authorization": f"Bearer {hf_api_key}"}
27
+
28
  API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
 
29
 
30
+ # Define the OpenAI GPT-3 text generation function with error handling
31
  def generate_with_gpt3(prompt, max_tokens=150, temperature=0.7):
32
+ try:
33
+ response = openai.Completion.create(
34
+ engine="text-davinci-003", # Use "text-davinci-003" for high-quality outputs
35
+ prompt=prompt,
36
+ max_tokens=max_tokens,
37
+ temperature=temperature,
38
+ top_p=0.9,
39
+ frequency_penalty=0.0,
40
+ presence_penalty=0.0
41
+ )
42
+ return response.choices[0].text.strip()
43
+ except Exception as e:
44
+ print(f"OpenAI API Error: {e}")
45
+ return "Error generating text with GPT-3. Check the OpenAI API settings."
46
 
47
  # Define the translation, GPT-3 text generation, and image generation function
48
  def translate_and_generate_image(tamil_text):
49
+ try:
50
+ # Step 1: Translate Tamil text to English using mbart-large-50
51
+ tokenizer.src_lang = "ta_IN"
52
+ inputs = tokenizer(tamil_text, return_tensors="pt")
53
+ translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
54
+ translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
55
+ except Exception as e:
56
+ return "Error during translation: " + str(e), "", None
57
 
58
+ try:
59
+ # Step 2: Generate high-quality descriptive text using OpenAI's GPT-3
60
+ prompt = f"Create a detailed and creative description based on the following text: {translated_text}"
61
+ generated_text = generate_with_gpt3(prompt, max_tokens=150, temperature=0.7)
62
+ except Exception as e:
63
+ return translated_text, f"Error during text generation: {e}", None
64
 
65
+ try:
66
+ # Step 3: Use the generated English text to create an image
67
+ def query(payload):
68
+ response = requests.post(API_URL, headers=headers, json=payload)
69
+ response.raise_for_status() # Raise error if request fails
70
+ return response.content
71
 
72
+ # Generate image using the generated text
73
+ image_bytes = query({"inputs": generated_text})
74
+ image = Image.open(io.BytesIO(image_bytes))
75
+ except Exception as e:
76
+ return translated_text, generated_text, f"Error during image generation: {e}"
77
 
78
  return translated_text, generated_text, image
79