Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,11 @@ from PIL import Image
|
|
7 |
import os
|
8 |
|
9 |
# Set up your OpenAI API key (make sure it's stored as an environment variable)
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Load the translation model and tokenizer
|
13 |
model_name = "facebook/mbart-large-50-many-to-one-mmt"
|
@@ -15,42 +19,61 @@ tokenizer = MBart50Tokenizer.from_pretrained(model_name)
|
|
15 |
model = MBartForConditionalGeneration.from_pretrained(model_name)
|
16 |
|
17 |
# Use the Hugging Face API key from environment variables for text-to-image model
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
|
19 |
-
headers = {"Authorization": f"Bearer {os.getenv('full_token')}"}
|
20 |
|
21 |
-
# Define the OpenAI GPT-3 text generation function
|
22 |
def generate_with_gpt3(prompt, max_tokens=150, temperature=0.7):
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# Define the translation, GPT-3 text generation, and image generation function
|
35 |
def translate_and_generate_image(tamil_text):
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
54 |
|
55 |
return translated_text, generated_text, image
|
56 |
|
|
|
7 |
import os
|
8 |
|
9 |
# Set up your OpenAI API key (make sure it's stored as an environment variable)
|
10 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
11 |
+
if openai_api_key is None:
|
12 |
+
raise ValueError("OpenAI API key not found! Please set 'OPENAI_API_KEY' environment variable.")
|
13 |
+
else:
|
14 |
+
openai.api_key = openai_api_key
|
15 |
|
16 |
# Load the translation model and tokenizer
|
17 |
model_name = "facebook/mbart-large-50-many-to-one-mmt"
|
|
|
19 |
model = MBartForConditionalGeneration.from_pretrained(model_name)
|
20 |
|
21 |
# Use the Hugging Face API key from environment variables for text-to-image model
|
22 |
+
hf_api_key = os.getenv("hf_token")
|
23 |
+
if hf_api_key is None:
|
24 |
+
raise ValueError("Hugging Face API key not found! Please set 'hf_token' environment variable.")
|
25 |
+
else:
|
26 |
+
headers = {"Authorization": f"Bearer {hf_api_key}"}
|
27 |
+
|
28 |
API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
|
|
|
29 |
|
30 |
+
# Define the OpenAI GPT-3 text generation function with error handling
|
31 |
def generate_with_gpt3(prompt, max_tokens=150, temperature=0.7):
|
32 |
+
try:
|
33 |
+
response = openai.Completion.create(
|
34 |
+
engine="text-davinci-003", # Use "text-davinci-003" for high-quality outputs
|
35 |
+
prompt=prompt,
|
36 |
+
max_tokens=max_tokens,
|
37 |
+
temperature=temperature,
|
38 |
+
top_p=0.9,
|
39 |
+
frequency_penalty=0.0,
|
40 |
+
presence_penalty=0.0
|
41 |
+
)
|
42 |
+
return response.choices[0].text.strip()
|
43 |
+
except Exception as e:
|
44 |
+
print(f"OpenAI API Error: {e}")
|
45 |
+
return "Error generating text with GPT-3. Check the OpenAI API settings."
|
46 |
|
47 |
# Define the translation, GPT-3 text generation, and image generation function
|
48 |
def translate_and_generate_image(tamil_text):
|
49 |
+
try:
|
50 |
+
# Step 1: Translate Tamil text to English using mbart-large-50
|
51 |
+
tokenizer.src_lang = "ta_IN"
|
52 |
+
inputs = tokenizer(tamil_text, return_tensors="pt")
|
53 |
+
translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
|
54 |
+
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
55 |
+
except Exception as e:
|
56 |
+
return "Error during translation: " + str(e), "", None
|
57 |
|
58 |
+
try:
|
59 |
+
# Step 2: Generate high-quality descriptive text using OpenAI's GPT-3
|
60 |
+
prompt = f"Create a detailed and creative description based on the following text: {translated_text}"
|
61 |
+
generated_text = generate_with_gpt3(prompt, max_tokens=150, temperature=0.7)
|
62 |
+
except Exception as e:
|
63 |
+
return translated_text, f"Error during text generation: {e}", None
|
64 |
|
65 |
+
try:
|
66 |
+
# Step 3: Use the generated English text to create an image
|
67 |
+
def query(payload):
|
68 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
69 |
+
response.raise_for_status() # Raise error if request fails
|
70 |
+
return response.content
|
71 |
|
72 |
+
# Generate image using the generated text
|
73 |
+
image_bytes = query({"inputs": generated_text})
|
74 |
+
image = Image.open(io.BytesIO(image_bytes))
|
75 |
+
except Exception as e:
|
76 |
+
return translated_text, generated_text, f"Error during image generation: {e}"
|
77 |
|
78 |
return translated_text, generated_text, image
|
79 |
|