Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -7,7 +7,7 @@ from PIL import Image | |
| 7 | 
             
            import os
         | 
| 8 |  | 
| 9 | 
             
            # Set up the Hugging Face API key from environment variables
         | 
| 10 | 
            -
            hf_api_key = os.getenv(" | 
| 11 | 
             
            if not hf_api_key:
         | 
| 12 | 
             
                raise ValueError("Hugging Face API key not found! Please set the 'HF_API_KEY' environment variable.")
         | 
| 13 | 
             
            headers = {"Authorization": f"Bearer {hf_api_key}"}
         | 
| @@ -20,10 +20,14 @@ translation_model_name = "facebook/mbart-large-50-many-to-one-mmt" | |
| 20 | 
             
            tokenizer = MBart50Tokenizer.from_pretrained(translation_model_name)
         | 
| 21 | 
             
            translation_model = MBartForConditionalGeneration.from_pretrained(translation_model_name)
         | 
| 22 |  | 
| 23 | 
            -
            # Load a text generation model from Hugging Face
         | 
| 24 | 
             
            text_generation_model_name = "EleutherAI/gpt-neo-2.7B"  # You can switch to "EleutherAI/gpt-j-6B" if available
         | 
| 25 | 
             
            text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
         | 
| 26 | 
            -
            text_model = AutoModelForCausalLM.from_pretrained( | 
|  | |
|  | |
|  | |
|  | |
| 27 |  | 
| 28 | 
             
            # Create a pipeline for text generation
         | 
| 29 | 
             
            text_generator = pipeline("text-generation", model=text_model, tokenizer=text_tokenizer)
         | 
|  | |
| 7 | 
             
            import os
         | 
| 8 |  | 
| 9 | 
             
            # Set up the Hugging Face API key from environment variables
         | 
| 10 | 
            +
            hf_api_key = os.getenv("HF_API_KEY")
         | 
| 11 | 
             
            if not hf_api_key:
         | 
| 12 | 
             
                raise ValueError("Hugging Face API key not found! Please set the 'HF_API_KEY' environment variable.")
         | 
| 13 | 
             
            headers = {"Authorization": f"Bearer {hf_api_key}"}
         | 
|  | |
| 20 | 
             
            tokenizer = MBart50Tokenizer.from_pretrained(translation_model_name)
         | 
| 21 | 
             
            translation_model = MBartForConditionalGeneration.from_pretrained(translation_model_name)
         | 
| 22 |  | 
| 23 | 
            +
            # Load a text generation model from Hugging Face using accelerate for memory optimization
         | 
| 24 | 
             
            text_generation_model_name = "EleutherAI/gpt-neo-2.7B"  # You can switch to "EleutherAI/gpt-j-6B" if available
         | 
| 25 | 
             
            text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
         | 
| 26 | 
            +
            text_model = AutoModelForCausalLM.from_pretrained(
         | 
| 27 | 
            +
                text_generation_model_name, 
         | 
| 28 | 
            +
                device_map="auto",  # Automatically allocate model layers to devices (requires accelerate)
         | 
| 29 | 
            +
                torch_dtype=torch.float32  # Specify dtype to optimize memory usage
         | 
| 30 | 
            +
            )
         | 
| 31 |  | 
| 32 | 
             
            # Create a pipeline for text generation
         | 
| 33 | 
             
            text_generator = pipeline("text-generation", model=text_model, tokenizer=text_tokenizer)
         |