gokilashree commited on
Commit
5826cb3
·
verified ·
1 Parent(s): e515701

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -54
app.py CHANGED
@@ -12,73 +12,68 @@ if not hf_api_key:
12
  raise ValueError("Hugging Face API key not found! Please set the 'HF_API_KEY' environment variable.")
13
  headers = {"Authorization": f"Bearer {hf_api_key}"}
14
 
15
- # Define the text-to-image model URL
16
- API_URL = "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4"
 
 
 
 
17
 
18
- # Use AutoTokenizer to avoid tokenizer mismatch warnings
19
  translation_model_name = "facebook/mbart-large-50-many-to-one-mmt"
20
- tokenizer = AutoTokenizer.from_pretrained(translation_model_name) # Use AutoTokenizer to avoid warnings
21
  translation_model = MBartForConditionalGeneration.from_pretrained(translation_model_name)
22
 
23
- # Load a text generation model from Hugging Face using accelerate for memory optimization
24
  text_generation_model_name = "EleutherAI/gpt-neo-2.7B"
25
  text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
26
- text_model = AutoModelForCausalLM.from_pretrained(
27
- text_generation_model_name,
28
- device_map="auto",
29
- torch_dtype=torch.float32
30
- )
31
 
32
  # Create a pipeline for text generation
33
  text_generator = pipeline("text-generation", model=text_model, tokenizer=text_tokenizer)
34
 
35
  # Function to generate an image using Hugging Face's text-to-image model
36
  def generate_image_from_text(translated_text):
37
- try:
38
- response = requests.post(API_URL, headers=headers, json={"inputs": translated_text})
39
- if response.status_code != 200:
40
- return None, f"Error generating image: {response.text}"
41
-
42
- image_bytes = response.content
43
- image = Image.open(io.BytesIO(image_bytes))
44
- return image, None
45
- except Exception as e:
46
- return None, f"Error during image generation: {e}"
 
 
 
 
47
 
48
- # Define the function to translate Tamil text, generate an image, and create a descriptive text
49
- def translate_generate_image_and_text(tamil_text):
50
- try:
51
- tokenizer.src_lang = "ta_IN"
52
- inputs = tokenizer(tamil_text, return_tensors="pt")
53
- translated_tokens = translation_model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
54
- translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
55
- except Exception as e:
56
- return f"Error during translation: {e}", None, None
57
 
58
- try:
59
- image, error_message = generate_image_from_text(translated_text)
60
- if error_message:
61
- return translated_text, None, error_message
62
- except Exception as e:
63
- return translated_text, None, f"Error during image generation: {e}"
64
 
65
- try:
66
- descriptive_text = text_generator(translated_text, max_length=100, num_return_sequences=1, temperature=0.7, top_p=0.9)[0]['generated_text']
67
- except Exception as e:
68
- return translated_text, image, f"Error during text generation: {e}"
 
 
69
 
70
- return translated_text, image, descriptive_text
71
-
72
- # Gradio interface setup
73
- iface = gr.Interface(
74
- fn=translate_generate_image_and_text,
75
- inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."),
76
- outputs=[gr.Textbox(label="Translated English Text"),
77
- gr.Image(label="Generated Image"),
78
- gr.Textbox(label="Generated Descriptive Text")],
79
- title="Tamil to English Translation, Image Creation, and Descriptive Text Generation",
80
- description="Translate Tamil text to English using Facebook's mbart-large-50 model, create an image using the translated text, and generate a descriptive text based on the translated content.",
81
- )
82
-
83
- # Launch the Gradio app
84
- iface.launch()
 
12
  raise ValueError("Hugging Face API key not found! Please set the 'HF_API_KEY' environment variable.")
13
  headers = {"Authorization": f"Bearer {hf_api_key}"}
14
 
15
+ # Define the text-to-image model URLs
16
+ model_urls = {
17
+ "stable_diffusion_v1_4": "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4",
18
+ "stable_diffusion_v1_5": "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5",
19
+ }
20
+ API_URL = model_urls["stable_diffusion_v1_4"]
21
 
22
+ # Define the translation model for multilingual text inputs
23
  translation_model_name = "facebook/mbart-large-50-many-to-one-mmt"
24
+ tokenizer = AutoTokenizer.from_pretrained(translation_model_name)
25
  translation_model = MBartForConditionalGeneration.from_pretrained(translation_model_name)
26
 
27
+ # Load a text generation model from Hugging Face
28
  text_generation_model_name = "EleutherAI/gpt-neo-2.7B"
29
  text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
30
+ text_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name, device_map="auto", torch_dtype=torch.float32)
 
 
 
 
31
 
32
  # Create a pipeline for text generation
33
  text_generator = pipeline("text-generation", model=text_model, tokenizer=text_tokenizer)
34
 
35
  # Function to generate an image using Hugging Face's text-to-image model
36
  def generate_image_from_text(translated_text):
37
+ payload = {"inputs": translated_text, "options": {"wait_for_model": True}}
38
+ response = requests.post(API_URL, headers=headers, json=payload)
39
+ if response.status_code == 200:
40
+ image_data = response.content
41
+ image = Image.open(io.BytesIO(image_data))
42
+ return image
43
+ else:
44
+ # If the model is loading, check the estimated wait time
45
+ if response.status_code == 503:
46
+ error_message = response.json()
47
+ estimated_time = error_message.get("estimated_time", "Unknown")
48
+ return f"Model is currently loading. Estimated wait time: {estimated_time} seconds. Try again later."
49
+ else:
50
+ return f"Failed to generate image. Error: {response.status_code}, Message: {response.text}"
51
 
52
+ # Function to translate text using the MBart model
53
+ def translate_text(input_text, src_lang="en"):
54
+ # Tokenize and translate
55
+ tokenizer.src_lang = src_lang
56
+ encoded_input = tokenizer(input_text, return_tensors="pt")
57
+ translated_tokens = translation_model.generate(**encoded_input)
58
+ translated_text = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
59
+ return translated_text
 
60
 
61
+ # Function to generate text using the GPT-Neo model
62
+ def generate_text(prompt, max_length=150):
63
+ generated_texts = text_generator(prompt, max_length=max_length, num_return_sequences=1)
64
+ return generated_texts[0]["generated_text"]
 
 
65
 
66
+ # Define the Gradio Interface
67
+ def app_interface(input_text, src_language="en"):
68
+ translated_text = translate_text(input_text, src_lang=src_language)
69
+ generated_image = generate_image_from_text(translated_text)
70
+ generated_text = generate_text(translated_text)
71
+ return generated_text, generated_image
72
 
73
+ # Launch the Gradio App
74
+ gr.Interface(
75
+ fn=app_interface,
76
+ inputs=[gr.inputs.Textbox(lines=2, placeholder="Enter text here..."), gr.inputs.Dropdown(["en", "fr", "de", "es"], default="en", label="Source Language")],
77
+ outputs=[gr.outputs.Textbox(label="Generated Text"), gr.outputs.Image(label="Generated Image")],
78
+ title="Multilingual Text-to-Image & Text Generation"
79
+ ).launch()