Spaces:
Runtime error
Runtime error
from transformers import MBartForConditionalGeneration, MBart50Tokenizer, AutoModelForCausalLM, AutoTokenizer, pipeline | |
import gradio as gr | |
import requests | |
import io | |
from PIL import Image | |
import os | |
# Load the translation model and tokenizer | |
model_name = "facebook/mbart-large-50-many-to-one-mmt" | |
tokenizer = MBart50Tokenizer.from_pretrained(model_name) | |
model = MBartForConditionalGeneration.from_pretrained(model_name) | |
# Use the Hugging Face API key from environment variables for text-to-image model | |
hf_api_key = os.getenv("new_hf_token") | |
if hf_api_key is None: | |
raise ValueError("Hugging Face API key not found! Please set 'full_token' environment variable.") | |
else: | |
headers = {"Authorization": f"Bearer {hf_api_key}"} | |
# Define the text-to-image model URL (using a faster text-to-image model) | |
API_URL = "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4" | |
# Load a smaller text generation model to reduce generation time | |
text_generation_model_name = "EleutherAI/gpt-neo-1.3B" | |
text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name) | |
text_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name) | |
# Create a pipeline for text generation using the selected model | |
text_generator = pipeline("text-generation", model=text_model, tokenizer=text_tokenizer) | |
# Function to generate an image using Hugging Face's text-to-image model | |
def generate_image_from_text(translated_text): | |
try: | |
# Enhanced prompt to focus on details and clarity | |
enhanced_prompt = f"A high-quality image of a person doing yoga with clear facial features and correct body proportions in a tranquil outdoor setting. " \ | |
f"Include detailed mountains, flowing river, and vibrant greenery, captured in soft sunrise light. Ensure the face and body are realistic and proportional." | |
print(f"Generating image from translated text: {enhanced_prompt}") | |
# Sending the enhanced prompt to the text-to-image model | |
response = requests.post(API_URL, headers=headers, json={"inputs": enhanced_prompt}) | |
if response.status_code == 200: | |
image_data = response.content | |
image = Image.open(io.BytesIO(image_data)) | |
return image | |
else: | |
raise ValueError(f"Error in image generation: {response.text}") | |
except Exception as e: | |
print(f"Error: {e}") | |
return None | |
# Translation Function | |
def translate_text(input_text, src_lang="en_XX", tgt_lang="hi_IN"): | |
tokenizer.src_lang = src_lang | |
encoded_input = tokenizer(input_text, return_tensors="pt") | |
generated_tokens = model.generate(encoded_input["input_ids"], forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang]) | |
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] | |
# Gradio Interface for image generation | |
def translate_and_generate_image(input_text): | |
translated_text = translate_text(input_text) | |
image = generate_image_from_text(translated_text) | |
return image | |
# Create a simple Gradio Interface | |
iface = gr.Interface(fn=translate_and_generate_image, | |
inputs="text", | |
outputs="image", | |
title="Yoga Image Generator", | |
description="Enter a description to translate and generate a high-quality yoga image.") | |
iface.launch() | |