Spaces:
Runtime error
Runtime error
import torch | |
from transformers import MBartForConditionalGeneration, AutoTokenizer, AutoModelForCausalLM, pipeline | |
import gradio as gr | |
import requests | |
import io | |
from PIL import Image | |
import os | |
# Set up the Hugging Face API key from environment variables | |
hf_api_key = os.getenv("new_hf_token") | |
if not hf_api_key: | |
raise ValueError("Hugging Face API key not found! Please set the 'HF_API_KEY' environment variable.") | |
headers = {"Authorization": f"Bearer {hf_api_key}"} | |
# Define the text-to-image model URLs | |
model_urls = { | |
"stable_diffusion_v1_4": "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4", | |
"stable_diffusion_v1_5": "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5", | |
} | |
API_URL = model_urls["stable_diffusion_v1_4"] | |
# Define the translation model for multilingual text inputs | |
translation_model_name = "facebook/mbart-large-50-many-to-one-mmt" | |
tokenizer = AutoTokenizer.from_pretrained(translation_model_name) | |
translation_model = MBartForConditionalGeneration.from_pretrained(translation_model_name) | |
# Load a text generation model from Hugging Face | |
text_generation_model_name = "EleutherAI/gpt-neo-2.7B" | |
text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name) | |
text_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name, device_map="auto", torch_dtype=torch.float32) | |
# Create a pipeline for text generation | |
text_generator = pipeline("text-generation", model=text_model, tokenizer=text_tokenizer) | |
# Function to generate an image using Hugging Face's text-to-image model | |
def generate_image_from_text(translated_text): | |
payload = {"inputs": translated_text, "options": {"wait_for_model": True}} | |
response = requests.post(API_URL, headers=headers, json=payload) | |
if response.status_code == 200: | |
image_data = response.content | |
image = Image.open(io.BytesIO(image_data)) | |
return image | |
else: | |
# If the model is loading, check the estimated wait time | |
if response.status_code == 503: | |
error_message = response.json() | |
estimated_time = error_message.get("estimated_time", "Unknown") | |
return f"Model is currently loading. Estimated wait time: {estimated_time} seconds. Try again later." | |
else: | |
return f"Failed to generate image. Error: {response.status_code}, Message: {response.text}" | |
# Function to translate text using the MBart model | |
def translate_text(input_text, src_lang="en"): | |
# Tokenize and translate | |
tokenizer.src_lang = src_lang | |
encoded_input = tokenizer(input_text, return_tensors="pt") | |
translated_tokens = translation_model.generate(**encoded_input) | |
translated_text = tokenizer.decode(translated_tokens[0], skip_special_tokens=True) | |
return translated_text | |
# Function to generate text using the GPT-Neo model | |
def generate_text(prompt, max_length=50): | |
generated_texts = text_generator(prompt, max_length=max_length, num_return_sequences=1) | |
return generated_texts[0]["generated_text"] | |
# Define the Gradio Interface | |
def app_interface(input_text, src_language="en"): | |
translated_text = translate_text(input_text, src_lang=src_language) | |
generated_image = generate_image_from_text(translated_text) | |
generated_text = generate_text(translated_text) | |
return generated_text, generated_image | |
# Launch the Gradio App using the new Gradio components | |
with gr.Blocks() as demo: | |
gr.Markdown("# Multilingual Text-to-Image & Text Generation") | |
# Define Gradio components | |
input_text = gr.Textbox(lines=2, placeholder="Enter text here...") | |
src_language = gr.Dropdown(["en", "fr", "de", "es"], value="en", label="Source Language") | |
# Display outputs for text and image generation | |
generated_text_output = gr.Textbox(label="Generated Text") | |
generated_image_output = gr.Image(label="Generated Image") | |
# Button to trigger the processing | |
generate_button = gr.Button("Generate") | |
# Link the button to the function call | |
generate_button.click(fn=app_interface, inputs=[input_text, src_language], outputs=[generated_text_output, generated_image_output]) | |
# Run the app | |
demo.launch() | |