gokceuludogan commited on
Commit
5a18336
·
verified ·
1 Parent(s): 90466c8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +77 -0
app.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ import spaces
4
+ from transformers import pipeline
5
+ import torch
6
+
7
+ binary_example = [["Yahudi terörüne karşı protestolar kararlılıkla devam ediyor."]]
8
+ category_example = [["Ermeni zulmü sırasında hayatını kaybeden kadınlar anısına dikilen anıt ziyarete açıldı."]]
9
+ target_example = [["Dün 5 bin suriyeli enik doğmuştur zaten Türkiyede aq 5 bin suriyelinin gitmesi çok çok az"]]
10
+
11
+ DESCRIPTION = """"
12
+ ## Hate Speech Detection in Turkish News
13
+ """
14
+
15
+ CITATION = """"
16
+ """
17
+
18
+ def binary_classification(input):
19
+ model = pipeline(model='gokceuludogan/berturk_tr_hate_print_w0.1')
20
+ return model(input)[0]
21
+
22
+ def category_classification():
23
+ model = pipeline(model='gokceuludogan/berturk/tr_hateprint_cat_w0.1_b128')
24
+ return model(input)[0]
25
+
26
+ def target_detection():
27
+ model = pipeline(model='gokceuludogan/turna_generation_tr_hateprint_target')
28
+ return model(input)[0]
29
+
30
+ with gr.Blocks(theme="abidlabs/Lime") as demo:
31
+
32
+ #gr.Markdown("# TURNA")
33
+ #gr.Image("images/turna-logo.png", width=100, show_label=False, show_download_button=False, show_share_button=False)
34
+
35
+ with gr.Tab("TRHatePrint"):
36
+ gr.Markdown(DESCRIPTION)
37
+
38
+ with gr.Tab("Binary Classification"):
39
+ gr.Markdown("Enter text to analyse hatefulness and pick the model.")
40
+ with gr.Column():
41
+ with gr.Row():
42
+ with gr.Column():
43
+ # sentiment_choice = gr.Radio(choices = ["turna_", "berturk"], label ="Model", value="turna_")
44
+ sentiment_input = gr.Textbox(label="Input")
45
+
46
+ sentiment_submit = gr.Button()
47
+ sentiment_output = gr.Textbox(label="Output")
48
+ sentiment_submit.click(binary_classification, inputs=[sentiment_input], outputs=sentiment_output)
49
+ sentiment_examples = gr.Examples(examples = binary_example, inputs = [sentiment_input], outputs=sentiment_output, fn=binary_classification)
50
+
51
+ with gr.Tab("Hate Speech Categorization"):
52
+ gr.Markdown("Enter a hateful text to categorize or try the example.")
53
+ with gr.Column():
54
+ with gr.Row():
55
+ with gr.Column():
56
+ text_input = gr.Textbox(label="Input")
57
+
58
+ text_submit = gr.Button()
59
+ text_output = gr.Textbox(label="Output")
60
+ text_submit.click(category_classification, inputs=[text_input], outputs=text_output)
61
+ text_examples = gr.Examples(examples = category_example,inputs=[text_input], outputs=text_output, fn=category_classification)
62
+
63
+
64
+ with gr.Tab("Target Detection"):
65
+ gr.Markdown("Enter text to detect targets ")
66
+ with gr.Column():
67
+ with gr.Row():
68
+ with gr.Column():
69
+ nli_first_input = gr.Textbox(label="Input")
70
+ nli_submit = gr.Button()
71
+ nli_output = gr.Textbox(label="Output")
72
+ nli_submit.click(target_detection, inputs=[nli_first_input], outputs=nli_output)
73
+ nli_examples = gr.Examples(examples = target_example, inputs = [nli_first_input], outputs=nli_output, fn=target_example)
74
+
75
+ gr.Markdown(CITATION)
76
+
77
+ demo.launch()