Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -28,12 +28,32 @@ binary_mapping = {
|
|
28 |
'LABEL_1': 'hateful',
|
29 |
}
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
category_mapping = {
|
32 |
'LABEL_0': 'non-hateful',
|
33 |
-
'LABEL_1': 'symbolization',
|
34 |
-
'LABEL_2': '
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
}
|
38 |
|
39 |
|
@@ -52,13 +72,17 @@ def perform_binary_classification(input_text, selected_model):
|
|
52 |
return binary_mapping.get(model(input_text)[0]['label'], 'error')
|
53 |
|
54 |
def perform_categorization(input_text):
|
55 |
-
model = pipeline(model=f'gokceuludogan/berturk_tr_hateprint_cat_w0.1_b128')
|
56 |
return category_mapping.get(model(input_text)[0]['label'], 'error')
|
57 |
|
58 |
-
def perform_target_detection(input_text):
|
59 |
-
|
60 |
-
|
61 |
|
|
|
|
|
|
|
|
|
62 |
def perform_multi_detection(input_text):
|
63 |
model = pipeline(model='gokceuludogan/turna_generation_tr_hateprint_multi')
|
64 |
return model(input_text)[0]['generated_text']
|
@@ -77,7 +101,7 @@ with gr.Blocks(theme="abidlabs/Lime") as hate_speech_demo:
|
|
77 |
model_choice_binary = gr.Radio(
|
78 |
choices=[
|
79 |
"turna_tr_hateprint_w0.1_new_",
|
80 |
-
"berturk_tr_hateprint_w0.1",
|
81 |
],
|
82 |
label="Select Model",
|
83 |
value="turna_tr_hateprint"
|
|
|
28 |
'LABEL_1': 'hateful',
|
29 |
}
|
30 |
|
31 |
+
# category_mapping = {
|
32 |
+
# 'LABEL_0': 'non-hateful',
|
33 |
+
# 'LABEL_1': 'symbolization',
|
34 |
+
# 'LABEL_2': 'exaggeration/generalization/attribution/distortion',
|
35 |
+
# 'LABEL_3': 'swearing/insult/defamation/dehumanization',
|
36 |
+
# 'LABEL_4': 'threat of enmity/war/attack/murder/harm',
|
37 |
+
# }
|
38 |
+
|
39 |
category_mapping = {
|
40 |
'LABEL_0': 'non-hateful',
|
41 |
+
'LABEL_1': 'symbolization/exaggeration/generalization/attribution/distortion',
|
42 |
+
'LABEL_2': 'swearing/insult/defamation/dehumanization/threat of enmity/war/attack/murder/harm',
|
43 |
+
}
|
44 |
+
|
45 |
+
target_mapping = {
|
46 |
+
'LABEL_0': 'No-group',
|
47 |
+
'LABEL_1': 'Refugees',
|
48 |
+
'LABEL_2': 'Israel-Jews',
|
49 |
+
'LABEL_3': 'Greeks',
|
50 |
+
'LABEL_4': 'Armenian',
|
51 |
+
'LABEL_5': 'Alevi',
|
52 |
+
'LABEL_6': 'Kurdish',
|
53 |
+
'LABEL_7': 'Arabian',
|
54 |
+
'LABEL_8': 'LGBTI+',
|
55 |
+
'LABEL_9': 'Women',
|
56 |
+
'LABEL_10': 'Other groups'
|
57 |
}
|
58 |
|
59 |
|
|
|
72 |
return binary_mapping.get(model(input_text)[0]['label'], 'error')
|
73 |
|
74 |
def perform_categorization(input_text):
|
75 |
+
model = pipeline(model='gokceuludogan/berturk_tr_hateprint_cat_class_w0.1_b128') # f'gokceuludogan/berturk_tr_hateprint_cat_w0.1_b128')
|
76 |
return category_mapping.get(model(input_text)[0]['label'], 'error')
|
77 |
|
78 |
+
# def perform_target_detection(input_text):
|
79 |
+
# model = pipeline(model='gokceuludogan/turna_generation_tr_hateprint_target')
|
80 |
+
# return model(input_text)[0]['generated_text']
|
81 |
|
82 |
+
def perform_target_detection(input_text):
|
83 |
+
model = pipeline(model='gokceuludogan/berturk_tr_hateprint_target_class_w0.1') # f'gokceuludogan/berturk_tr_hateprint_cat_w0.1_b128')
|
84 |
+
return target_mapping.get(model(input_text)[0]['label'], 'error')
|
85 |
+
|
86 |
def perform_multi_detection(input_text):
|
87 |
model = pipeline(model='gokceuludogan/turna_generation_tr_hateprint_multi')
|
88 |
return model(input_text)[0]['generated_text']
|
|
|
101 |
model_choice_binary = gr.Radio(
|
102 |
choices=[
|
103 |
"turna_tr_hateprint_w0.1_new_",
|
104 |
+
"berturk_tr_hateprint_w0.1_b128_v2", # "berturk_tr_hateprint_w0.1",
|
105 |
],
|
106 |
label="Select Model",
|
107 |
value="turna_tr_hateprint"
|