gokaygokay commited on
Commit
cd9c33a
·
2 Parent(s): ef5a863 d74f4ad

Resolved merge conflicts in app.py

Browse files
Files changed (1) hide show
  1. app.py +301 -0
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import gradio as gr
2
  import spaces
3
  from gradio_litmodel3d import LitModel3D
@@ -294,4 +295,304 @@ if __name__ == "__main__":
294
  except:
295
  pass
296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297
  demo.launch()
 
1
+ <<<<<<< HEAD
2
  import gradio as gr
3
  import spaces
4
  from gradio_litmodel3d import LitModel3D
 
295
  except:
296
  pass
297
 
298
+ =======
299
+ import gradio as gr
300
+ import spaces
301
+ from gradio_litmodel3d import LitModel3D
302
+ import os
303
+ import shutil
304
+ import random
305
+ import uuid
306
+ from datetime import datetime
307
+ from diffusers import DiffusionPipeline
308
+
309
+ os.environ['SPCONV_ALGO'] = 'native'
310
+ from typing import *
311
+ import torch
312
+ import numpy as np
313
+ import imageio
314
+ from easydict import EasyDict as edict
315
+ from PIL import Image
316
+ from trellis.pipelines import TrellisImageTo3DPipeline
317
+ from trellis.representations import Gaussian, MeshExtractResult
318
+ from trellis.utils import render_utils, postprocessing_utils
319
+
320
+ huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
321
+ # Constants
322
+ MAX_SEED = np.iinfo(np.int32).max
323
+ TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
324
+ os.makedirs(TMP_DIR, exist_ok=True)
325
+
326
+ # Create permanent storage directory for Flux generated images
327
+ SAVE_DIR = "saved_images"
328
+ if not os.path.exists(SAVE_DIR):
329
+ os.makedirs(SAVE_DIR, exist_ok=True)
330
+
331
+ def start_session(req: gr.Request):
332
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
333
+ os.makedirs(user_dir, exist_ok=True)
334
+
335
+ def end_session(req: gr.Request):
336
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
337
+ shutil.rmtree(user_dir)
338
+
339
+ def preprocess_image(image: Image.Image) -> Image.Image:
340
+ processed_image = trellis_pipeline.preprocess_image(image)
341
+ return processed_image
342
+
343
+ def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
344
+ return {
345
+ 'gaussian': {
346
+ **gs.init_params,
347
+ '_xyz': gs._xyz.cpu().numpy(),
348
+ '_features_dc': gs._features_dc.cpu().numpy(),
349
+ '_scaling': gs._scaling.cpu().numpy(),
350
+ '_rotation': gs._rotation.cpu().numpy(),
351
+ '_opacity': gs._opacity.cpu().numpy(),
352
+ },
353
+ 'mesh': {
354
+ 'vertices': mesh.vertices.cpu().numpy(),
355
+ 'faces': mesh.faces.cpu().numpy(),
356
+ },
357
+ }
358
+
359
+ def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
360
+ gs = Gaussian(
361
+ aabb=state['gaussian']['aabb'],
362
+ sh_degree=state['gaussian']['sh_degree'],
363
+ mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
364
+ scaling_bias=state['gaussian']['scaling_bias'],
365
+ opacity_bias=state['gaussian']['opacity_bias'],
366
+ scaling_activation=state['gaussian']['scaling_activation'],
367
+ )
368
+ gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
369
+ gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
370
+ gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
371
+ gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
372
+ gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
373
+
374
+ mesh = edict(
375
+ vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
376
+ faces=torch.tensor(state['mesh']['faces'], device='cuda'),
377
+ )
378
+
379
+ return gs, mesh
380
+
381
+ def get_seed(randomize_seed: bool, seed: int) -> int:
382
+ return np.random.randint(0, MAX_SEED) if randomize_seed else seed
383
+
384
+ @spaces.GPU
385
+ def generate_flux_image(
386
+ prompt: str,
387
+ seed: int,
388
+ randomize_seed: bool,
389
+ width: int,
390
+ height: int,
391
+ guidance_scale: float,
392
+ num_inference_steps: int,
393
+ lora_scale: float,
394
+ progress: gr.Progress = gr.Progress(track_tqdm=True),
395
+ ) -> Image.Image:
396
+ """Generate image using Flux pipeline"""
397
+ if randomize_seed:
398
+ seed = random.randint(0, MAX_SEED)
399
+ generator = torch.Generator(device=device).manual_seed(seed)
400
+
401
+ image = flux_pipeline(
402
+ prompt=prompt,
403
+ guidance_scale=guidance_scale,
404
+ num_inference_steps=num_inference_steps,
405
+ width=width,
406
+ height=height,
407
+ generator=generator,
408
+ joint_attention_kwargs={"scale": lora_scale},
409
+ ).images[0]
410
+
411
+ # Save the generated image
412
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
413
+ unique_id = str(uuid.uuid4())[:8]
414
+ filename = f"{timestamp}_{unique_id}.png"
415
+ filepath = os.path.join(SAVE_DIR, filename)
416
+ image.save(filepath)
417
+
418
+ return image
419
+
420
+ @spaces.GPU
421
+ def image_to_3d(
422
+ image: Image.Image,
423
+ seed: int,
424
+ ss_guidance_strength: float,
425
+ ss_sampling_steps: int,
426
+ slat_guidance_strength: float,
427
+ slat_sampling_steps: int,
428
+ req: gr.Request,
429
+ ) -> Tuple[dict, str]:
430
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
431
+ outputs = trellis_pipeline.run(
432
+ image,
433
+ seed=seed,
434
+ formats=["gaussian", "mesh"],
435
+ preprocess_image=False,
436
+ sparse_structure_sampler_params={
437
+ "steps": ss_sampling_steps,
438
+ "cfg_strength": ss_guidance_strength,
439
+ },
440
+ slat_sampler_params={
441
+ "steps": slat_sampling_steps,
442
+ "cfg_strength": slat_guidance_strength,
443
+ },
444
+ )
445
+ video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
446
+ video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
447
+ video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
448
+ video_path = os.path.join(user_dir, 'sample.mp4')
449
+ imageio.mimsave(video_path, video, fps=15)
450
+ state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
451
+ torch.cuda.empty_cache()
452
+ return state, video_path
453
+
454
+ @spaces.GPU(duration=90)
455
+ def extract_glb(
456
+ state: dict,
457
+ mesh_simplify: float,
458
+ texture_size: int,
459
+ req: gr.Request,
460
+ ) -> Tuple[str, str]:
461
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
462
+ gs, mesh = unpack_state(state)
463
+ glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
464
+ glb_path = os.path.join(user_dir, 'sample.glb')
465
+ glb.export(glb_path)
466
+ torch.cuda.empty_cache()
467
+ return glb_path, glb_path
468
+
469
+ @spaces.GPU
470
+ def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
471
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
472
+ gs, _ = unpack_state(state)
473
+ gaussian_path = os.path.join(user_dir, 'sample.ply')
474
+ gs.save_ply(gaussian_path)
475
+ torch.cuda.empty_cache()
476
+ return gaussian_path, gaussian_path
477
+
478
+ # Gradio Interface
479
+ with gr.Blocks() as demo:
480
+ gr.Markdown("""
481
+ ## Game Asset Generation to 3D with FLUX and TRELLIS
482
+ * Enter a prompt to generate a game asset image, then convert it to 3D
483
+ * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
484
+ """)
485
+
486
+ with gr.Row():
487
+ with gr.Column():
488
+ # Flux image generation inputs
489
+ prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description")
490
+ with gr.Accordion("Generation Settings", open=False):
491
+ seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
492
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
493
+ with gr.Row():
494
+ width = gr.Slider(256, 1024, label="Width", value=768, step=32)
495
+ height = gr.Slider(256, 1024, label="Height", value=768, step=32)
496
+ with gr.Row():
497
+ guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
498
+ num_inference_steps = gr.Slider(1, 50, label="Steps", value=30, step=1)
499
+ lora_scale = gr.Slider(0.0, 1.0, label="LoRA Scale", value=1.0, step=0.1)
500
+
501
+ with gr.Accordion("3D Generation Settings", open=False):
502
+ gr.Markdown("Stage 1: Sparse Structure Generation")
503
+ with gr.Row():
504
+ ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
505
+ ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
506
+ gr.Markdown("Stage 2: Structured Latent Generation")
507
+ with gr.Row():
508
+ slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
509
+ slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
510
+
511
+ generate_btn = gr.Button("Generate")
512
+
513
+ with gr.Accordion("GLB Extraction Settings", open=False):
514
+ mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
515
+ texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
516
+
517
+ with gr.Row():
518
+ extract_glb_btn = gr.Button("Extract GLB", interactive=False)
519
+ extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
520
+
521
+ with gr.Column():
522
+ generated_image = gr.Image(label="Generated Asset", type="pil")
523
+ video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
524
+ model_output = LitModel3D(label="Extracted GLB/Gaussian")
525
+
526
+ with gr.Row():
527
+ download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
528
+ download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
529
+
530
+ output_buf = gr.State()
531
+
532
+ # Event handlers
533
+ demo.load(start_session)
534
+ demo.unload(end_session)
535
+
536
+ generate_btn.click(
537
+ generate_flux_image,
538
+ inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_scale],
539
+ outputs=[generated_image],
540
+ ).then(
541
+ image_to_3d,
542
+ inputs=[generated_image, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
543
+ outputs=[output_buf, video_output],
544
+ ).then(
545
+ lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
546
+ outputs=[extract_glb_btn, extract_gs_btn],
547
+ )
548
+
549
+ extract_glb_btn.click(
550
+ extract_glb,
551
+ inputs=[output_buf, mesh_simplify, texture_size],
552
+ outputs=[model_output, download_glb],
553
+ ).then(
554
+ lambda: gr.Button(interactive=True),
555
+ outputs=[download_glb],
556
+ )
557
+
558
+ extract_gs_btn.click(
559
+ extract_gaussian,
560
+ inputs=[output_buf],
561
+ outputs=[model_output, download_gs],
562
+ ).then(
563
+ lambda: gr.Button(interactive=True),
564
+ outputs=[download_gs],
565
+ )
566
+
567
+ model_output.clear(
568
+ lambda: gr.Button(interactive=False),
569
+ outputs=[download_glb],
570
+ )
571
+
572
+ # Initialize both pipelines
573
+ if __name__ == "__main__":
574
+ from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig
575
+ from transformers import BitsAndBytesConfig as BitsAndBytesConfigTF
576
+ # Initialize Flux pipeline
577
+ device = "cuda" if torch.cuda.is_available() else "cpu"
578
+ huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
579
+
580
+ dtype = torch.bfloat16
581
+ file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/gokaygokay_00001_.safetensors"
582
+ single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
583
+ quantization_config_tf = BitsAndBytesConfigTF(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
584
+ text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
585
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
586
+ transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
587
+ flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, quantization_config=quantization_config, token=huggingface_token)
588
+
589
+ # Initialize Trellis pipeline
590
+ trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
591
+ trellis_pipeline.cuda()
592
+ try:
593
+ trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
594
+ except:
595
+ pass
596
+
597
+ >>>>>>> d74f4adbedc376ca385ce749e827d3c18535c4f0
598
  demo.launch()