import gradio as gr import numpy as np import random import spaces import torch from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast from huggingface_hub import hf_hub_download from optimum.quanto import freeze, qfloat8, quantize from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images import os MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 # Set up environment variables and device huggingface_token = os.getenv("HUGGINGFACE_TOKEN") dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" # Load VAE models taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained( "black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype, token=huggingface_token ).to(device) # Initialize FluxPipeline instead of DiffusionPipeline from pipelines import FluxPipeline pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1, token=huggingface_token ).to(device) # Load and fuse LoRA BEFORE quantizing print('Loading and fusing LoRA, please wait...') lora_path = hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors") pipe.load_lora_weights(lora_path) pipe.fuse_lora(lora_scale=0.125) pipe.unload_lora_weights() # Quantize the transformer print("Quantizing transformer") quantize(pipe.transformer, weights=qfloat8) freeze(pipe.transformer) # Quantize the T5 text encoder print("Quantizing T5 text encoder") quantize(pipe.text_encoder_2, weights=qfloat8) freeze(pipe.text_encoder_2) # Move quantized components to device (if not already) pipe.transformer.to(device) pipe.text_encoder_2.to(device) # Move other components to device pipe.text_encoder.to(device, dtype=dtype) torch.cuda.empty_cache() @spaces.GPU(duration=75) def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, output_type="pil", good_vae=good_vae, ): yield img, seed examples = [ "wbgmsst, a cat, white background", "wbgmsst, a warrior, white background", "wbgmsst, an anime girl, white background", ] css = """ #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 [dev] 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples=examples, fn=infer, inputs=[prompt], outputs=[result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result, seed] ) demo.launch()