Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,131 +1,131 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import tempfile
|
| 3 |
-
import time
|
| 4 |
-
import gradio as gr
|
| 5 |
-
import torch
|
| 6 |
-
from PIL import Image
|
| 7 |
-
from diffusers import
|
| 8 |
-
from huggingface_hub import hf_hub_download
|
| 9 |
-
from sf3d.system import SF3D
|
| 10 |
-
import sf3d.utils as sf3d_utils
|
| 11 |
-
from gradio_litmodel3d import LitModel3D
|
| 12 |
-
|
| 13 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
-
dtype = torch.bfloat16
|
| 15 |
-
|
| 16 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
| 17 |
-
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 18 |
-
# Set up environment and cache
|
| 19 |
-
cache_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "models")
|
| 20 |
-
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
| 21 |
-
os.environ["HF_HUB_CACHE"] = cache_path
|
| 22 |
-
os.environ["HF_HOME"] = cache_path
|
| 23 |
-
|
| 24 |
-
if not os.path.exists(cache_path):
|
| 25 |
-
os.makedirs(cache_path, exist_ok=True)
|
| 26 |
-
|
| 27 |
-
# Initialize Flux pipeline
|
| 28 |
-
pipe =
|
| 29 |
-
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
|
| 30 |
-
pipe.fuse_lora(lora_scale=0.125)
|
| 31 |
-
pipe.to(device="cuda", dtype=torch.bfloat16)
|
| 32 |
-
|
| 33 |
-
# Initialize SF3D model
|
| 34 |
-
sf3d_model = SF3D.from_pretrained(
|
| 35 |
-
"stabilityai/stable-fast-3d",
|
| 36 |
-
config_name="config.yaml",
|
| 37 |
-
weight_name="model.safetensors",
|
| 38 |
-
token=huggingface_token
|
| 39 |
-
|
| 40 |
-
)
|
| 41 |
-
sf3d_model.eval().cuda()
|
| 42 |
-
|
| 43 |
-
# Constants for SF3D
|
| 44 |
-
COND_WIDTH, COND_HEIGHT = 512, 512
|
| 45 |
-
COND_DISTANCE, COND_FOVY_DEG = 1.6, 40
|
| 46 |
-
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
|
| 47 |
-
|
| 48 |
-
c2w_cond = sf3d_utils.default_cond_c2w(COND_DISTANCE)
|
| 49 |
-
intrinsic, intrinsic_normed_cond = sf3d_utils.create_intrinsic_from_fov_deg(
|
| 50 |
-
COND_FOVY_DEG, COND_HEIGHT, COND_WIDTH
|
| 51 |
-
)
|
| 52 |
-
|
| 53 |
-
def generate_image(prompt, height, width, steps, scales, seed):
|
| 54 |
-
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
| 55 |
-
return pipe(
|
| 56 |
-
prompt=[prompt],
|
| 57 |
-
generator=torch.Generator().manual_seed(int(seed)),
|
| 58 |
-
num_inference_steps=int(steps),
|
| 59 |
-
guidance_scale=float(scales),
|
| 60 |
-
height=int(height),
|
| 61 |
-
width=int(width),
|
| 62 |
-
max_sequence_length=256
|
| 63 |
-
).images[0]
|
| 64 |
-
|
| 65 |
-
def create_batch(input_image: Image.Image) -> dict:
|
| 66 |
-
img_cond = torch.from_numpy(
|
| 67 |
-
np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32) / 255.0
|
| 68 |
-
).float().clip(0, 1)
|
| 69 |
-
mask_cond = img_cond[:, :, -1:]
|
| 70 |
-
rgb_cond = torch.lerp(
|
| 71 |
-
torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
-
batch_elem = {
|
| 75 |
-
"rgb_cond": rgb_cond,
|
| 76 |
-
"mask_cond": mask_cond,
|
| 77 |
-
"c2w_cond": c2w_cond.unsqueeze(0),
|
| 78 |
-
"intrinsic_cond": intrinsic.unsqueeze(0),
|
| 79 |
-
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
|
| 80 |
-
}
|
| 81 |
-
return {k: v.unsqueeze(0) for k, v in batch_elem.items()}
|
| 82 |
-
|
| 83 |
-
def generate_3d_model(input_image):
|
| 84 |
-
with torch.no_grad():
|
| 85 |
-
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
| 86 |
-
model_batch = create_batch(input_image)
|
| 87 |
-
model_batch = {k: v.cuda() for k, v in model_batch.items()}
|
| 88 |
-
trimesh_mesh, _ = sf3d_model.generate_mesh(model_batch, 1024)
|
| 89 |
-
trimesh_mesh = trimesh_mesh[0]
|
| 90 |
-
|
| 91 |
-
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".glb")
|
| 92 |
-
trimesh_mesh.export(tmp_file.name, file_type="glb", include_normals=True)
|
| 93 |
-
return tmp_file.name
|
| 94 |
-
|
| 95 |
-
def process_and_generate(prompt, height, width, steps, scales, seed):
|
| 96 |
-
# Generate image from prompt
|
| 97 |
-
generated_image = generate_image(prompt, height, width, steps, scales, seed)
|
| 98 |
-
|
| 99 |
-
# Generate 3D model from the image
|
| 100 |
-
glb_file = generate_3d_model(generated_image)
|
| 101 |
-
|
| 102 |
-
return generated_image, glb_file
|
| 103 |
-
|
| 104 |
-
# Gradio interface
|
| 105 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 106 |
-
gr.Markdown("# Text-to-3D Model Generator")
|
| 107 |
-
|
| 108 |
-
with gr.Row():
|
| 109 |
-
with gr.Column(scale=3):
|
| 110 |
-
prompt = gr.Textbox(label="Your Image Description", lines=3)
|
| 111 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 112 |
-
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
|
| 113 |
-
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
|
| 114 |
-
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
|
| 115 |
-
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
|
| 116 |
-
seed = gr.Number(label="Seed", value=3413, precision=0)
|
| 117 |
-
|
| 118 |
-
generate_btn = gr.Button("Generate 3D Model", variant="primary")
|
| 119 |
-
|
| 120 |
-
with gr.Column(scale=4):
|
| 121 |
-
output_image = gr.Image(label="Generated Image")
|
| 122 |
-
output_3d = LitModel3D(label="3D Model", clear_color=[0.0, 0.0, 0.0, 0.0])
|
| 123 |
-
|
| 124 |
-
generate_btn.click(
|
| 125 |
-
process_and_generate,
|
| 126 |
-
inputs=[prompt, height, width, steps, scales, seed],
|
| 127 |
-
outputs=[output_image, output_3d]
|
| 128 |
-
)
|
| 129 |
-
|
| 130 |
-
if __name__ == "__main__":
|
| 131 |
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import tempfile
|
| 3 |
+
import time
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import torch
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from diffusers import DiffusionPipeline
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
+
from sf3d.system import SF3D
|
| 10 |
+
import sf3d.utils as sf3d_utils
|
| 11 |
+
from gradio_litmodel3d import LitModel3D
|
| 12 |
+
|
| 13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
dtype = torch.bfloat16
|
| 15 |
+
|
| 16 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 17 |
+
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 18 |
+
# Set up environment and cache
|
| 19 |
+
cache_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "models")
|
| 20 |
+
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
| 21 |
+
os.environ["HF_HUB_CACHE"] = cache_path
|
| 22 |
+
os.environ["HF_HOME"] = cache_path
|
| 23 |
+
|
| 24 |
+
if not os.path.exists(cache_path):
|
| 25 |
+
os.makedirs(cache_path, exist_ok=True)
|
| 26 |
+
|
| 27 |
+
# Initialize Flux pipeline
|
| 28 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token = huggingface_token).to(device)
|
| 29 |
+
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
|
| 30 |
+
pipe.fuse_lora(lora_scale=0.125)
|
| 31 |
+
pipe.to(device="cuda", dtype=torch.bfloat16)
|
| 32 |
+
|
| 33 |
+
# Initialize SF3D model
|
| 34 |
+
sf3d_model = SF3D.from_pretrained(
|
| 35 |
+
"stabilityai/stable-fast-3d",
|
| 36 |
+
config_name="config.yaml",
|
| 37 |
+
weight_name="model.safetensors",
|
| 38 |
+
token=huggingface_token
|
| 39 |
+
|
| 40 |
+
)
|
| 41 |
+
sf3d_model.eval().cuda()
|
| 42 |
+
|
| 43 |
+
# Constants for SF3D
|
| 44 |
+
COND_WIDTH, COND_HEIGHT = 512, 512
|
| 45 |
+
COND_DISTANCE, COND_FOVY_DEG = 1.6, 40
|
| 46 |
+
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
|
| 47 |
+
|
| 48 |
+
c2w_cond = sf3d_utils.default_cond_c2w(COND_DISTANCE)
|
| 49 |
+
intrinsic, intrinsic_normed_cond = sf3d_utils.create_intrinsic_from_fov_deg(
|
| 50 |
+
COND_FOVY_DEG, COND_HEIGHT, COND_WIDTH
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
def generate_image(prompt, height, width, steps, scales, seed):
|
| 54 |
+
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
| 55 |
+
return pipe(
|
| 56 |
+
prompt=[prompt],
|
| 57 |
+
generator=torch.Generator().manual_seed(int(seed)),
|
| 58 |
+
num_inference_steps=int(steps),
|
| 59 |
+
guidance_scale=float(scales),
|
| 60 |
+
height=int(height),
|
| 61 |
+
width=int(width),
|
| 62 |
+
max_sequence_length=256
|
| 63 |
+
).images[0]
|
| 64 |
+
|
| 65 |
+
def create_batch(input_image: Image.Image) -> dict:
|
| 66 |
+
img_cond = torch.from_numpy(
|
| 67 |
+
np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32) / 255.0
|
| 68 |
+
).float().clip(0, 1)
|
| 69 |
+
mask_cond = img_cond[:, :, -1:]
|
| 70 |
+
rgb_cond = torch.lerp(
|
| 71 |
+
torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
batch_elem = {
|
| 75 |
+
"rgb_cond": rgb_cond,
|
| 76 |
+
"mask_cond": mask_cond,
|
| 77 |
+
"c2w_cond": c2w_cond.unsqueeze(0),
|
| 78 |
+
"intrinsic_cond": intrinsic.unsqueeze(0),
|
| 79 |
+
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
|
| 80 |
+
}
|
| 81 |
+
return {k: v.unsqueeze(0) for k, v in batch_elem.items()}
|
| 82 |
+
|
| 83 |
+
def generate_3d_model(input_image):
|
| 84 |
+
with torch.no_grad():
|
| 85 |
+
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
| 86 |
+
model_batch = create_batch(input_image)
|
| 87 |
+
model_batch = {k: v.cuda() for k, v in model_batch.items()}
|
| 88 |
+
trimesh_mesh, _ = sf3d_model.generate_mesh(model_batch, 1024)
|
| 89 |
+
trimesh_mesh = trimesh_mesh[0]
|
| 90 |
+
|
| 91 |
+
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".glb")
|
| 92 |
+
trimesh_mesh.export(tmp_file.name, file_type="glb", include_normals=True)
|
| 93 |
+
return tmp_file.name
|
| 94 |
+
|
| 95 |
+
def process_and_generate(prompt, height, width, steps, scales, seed):
|
| 96 |
+
# Generate image from prompt
|
| 97 |
+
generated_image = generate_image(prompt, height, width, steps, scales, seed)
|
| 98 |
+
|
| 99 |
+
# Generate 3D model from the image
|
| 100 |
+
glb_file = generate_3d_model(generated_image)
|
| 101 |
+
|
| 102 |
+
return generated_image, glb_file
|
| 103 |
+
|
| 104 |
+
# Gradio interface
|
| 105 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 106 |
+
gr.Markdown("# Text-to-3D Model Generator")
|
| 107 |
+
|
| 108 |
+
with gr.Row():
|
| 109 |
+
with gr.Column(scale=3):
|
| 110 |
+
prompt = gr.Textbox(label="Your Image Description", lines=3)
|
| 111 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 112 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
|
| 113 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
|
| 114 |
+
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
|
| 115 |
+
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
|
| 116 |
+
seed = gr.Number(label="Seed", value=3413, precision=0)
|
| 117 |
+
|
| 118 |
+
generate_btn = gr.Button("Generate 3D Model", variant="primary")
|
| 119 |
+
|
| 120 |
+
with gr.Column(scale=4):
|
| 121 |
+
output_image = gr.Image(label="Generated Image")
|
| 122 |
+
output_3d = LitModel3D(label="3D Model", clear_color=[0.0, 0.0, 0.0, 0.0])
|
| 123 |
+
|
| 124 |
+
generate_btn.click(
|
| 125 |
+
process_and_generate,
|
| 126 |
+
inputs=[prompt, height, width, steps, scales, seed],
|
| 127 |
+
outputs=[output_image, output_3d]
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
if __name__ == "__main__":
|
| 131 |
demo.launch()
|