Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -32,8 +32,11 @@ vlm_processor = PaliGemmaProcessor.from_pretrained("gokaygokay/sd3-long-captione
|
|
32 |
enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance", device=device)
|
33 |
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)
|
34 |
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
MAX_SEED = np.iinfo(np.int32).max
|
39 |
MAX_IMAGE_SIZE = 1344
|
@@ -90,8 +93,10 @@ def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height,
|
|
90 |
seed = random.randint(0, MAX_SEED)
|
91 |
|
92 |
generator = torch.Generator().manual_seed(seed)
|
|
|
|
|
93 |
|
94 |
-
image =
|
95 |
prompt=prompt,
|
96 |
negative_prompt=negative_prompt,
|
97 |
guidance_scale=guidance_scale,
|
@@ -143,7 +148,7 @@ def img2img_generate(
|
|
143 |
|
144 |
generator = torch.Generator().manual_seed(seed)
|
145 |
|
146 |
-
img2img_pipe =
|
147 |
|
148 |
init_image = init_image.resize((768, 768))
|
149 |
|
|
|
32 |
enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance", device=device)
|
33 |
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)
|
34 |
|
35 |
+
def load_pipeline(pipeline_type):
|
36 |
+
if pipeline_type == "text2img":
|
37 |
+
return StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=dtype).to(device)
|
38 |
+
elif pipeline_type == "img2img":
|
39 |
+
return StableDiffusion3Img2ImgPipeline.from_pretrained(model_path, torch_dtype=dtype).to(device)
|
40 |
|
41 |
MAX_SEED = np.iinfo(np.int32).max
|
42 |
MAX_IMAGE_SIZE = 1344
|
|
|
93 |
seed = random.randint(0, MAX_SEED)
|
94 |
|
95 |
generator = torch.Generator().manual_seed(seed)
|
96 |
+
|
97 |
+
pipe = load_pipeline("text2img")
|
98 |
|
99 |
+
image = pipe(
|
100 |
prompt=prompt,
|
101 |
negative_prompt=negative_prompt,
|
102 |
guidance_scale=guidance_scale,
|
|
|
148 |
|
149 |
generator = torch.Generator().manual_seed(seed)
|
150 |
|
151 |
+
img2img_pipe = load_pipeline("img2img")
|
152 |
|
153 |
init_image = init_image.resize((768, 768))
|
154 |
|