Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
74d41ea
1
Parent(s):
f469d2f
delete
Browse files- live_preview_helpers.py +0 -166
- pipelines.py +0 -1417
- stable_diffusion_model.py +0 -0
live_preview_helpers.py
DELETED
@@ -1,166 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import numpy as np
|
3 |
-
from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
|
4 |
-
from typing import Any, Dict, List, Optional, Union
|
5 |
-
|
6 |
-
# Helper functions
|
7 |
-
def calculate_shift(
|
8 |
-
image_seq_len,
|
9 |
-
base_seq_len: int = 256,
|
10 |
-
max_seq_len: int = 4096,
|
11 |
-
base_shift: float = 0.5,
|
12 |
-
max_shift: float = 1.16,
|
13 |
-
):
|
14 |
-
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
15 |
-
b = base_shift - m * base_seq_len
|
16 |
-
mu = image_seq_len * m + b
|
17 |
-
return mu
|
18 |
-
|
19 |
-
def retrieve_timesteps(
|
20 |
-
scheduler,
|
21 |
-
num_inference_steps: Optional[int] = None,
|
22 |
-
device: Optional[Union[str, torch.device]] = None,
|
23 |
-
timesteps: Optional[List[int]] = None,
|
24 |
-
sigmas: Optional[List[float]] = None,
|
25 |
-
**kwargs,
|
26 |
-
):
|
27 |
-
if timesteps is not None and sigmas is not None:
|
28 |
-
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
29 |
-
if timesteps is not None:
|
30 |
-
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
31 |
-
timesteps = scheduler.timesteps
|
32 |
-
num_inference_steps = len(timesteps)
|
33 |
-
elif sigmas is not None:
|
34 |
-
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
35 |
-
timesteps = scheduler.timesteps
|
36 |
-
num_inference_steps = len(timesteps)
|
37 |
-
else:
|
38 |
-
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
39 |
-
timesteps = scheduler.timesteps
|
40 |
-
return timesteps, num_inference_steps
|
41 |
-
|
42 |
-
# FLUX pipeline function
|
43 |
-
@torch.inference_mode()
|
44 |
-
def flux_pipe_call_that_returns_an_iterable_of_images(
|
45 |
-
self,
|
46 |
-
prompt: Union[str, List[str]] = None,
|
47 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
48 |
-
height: Optional[int] = None,
|
49 |
-
width: Optional[int] = None,
|
50 |
-
num_inference_steps: int = 28,
|
51 |
-
timesteps: List[int] = None,
|
52 |
-
guidance_scale: float = 3.5,
|
53 |
-
num_images_per_prompt: Optional[int] = 1,
|
54 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
55 |
-
latents: Optional[torch.FloatTensor] = None,
|
56 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
57 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
58 |
-
output_type: Optional[str] = "pil",
|
59 |
-
return_dict: bool = True,
|
60 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
61 |
-
max_sequence_length: int = 512,
|
62 |
-
good_vae: Optional[Any] = None,
|
63 |
-
):
|
64 |
-
height = height or self.default_sample_size * self.vae_scale_factor
|
65 |
-
width = width or self.default_sample_size * self.vae_scale_factor
|
66 |
-
|
67 |
-
# 1. Check inputs
|
68 |
-
self.check_inputs(
|
69 |
-
prompt,
|
70 |
-
prompt_2,
|
71 |
-
height,
|
72 |
-
width,
|
73 |
-
prompt_embeds=prompt_embeds,
|
74 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
75 |
-
max_sequence_length=max_sequence_length,
|
76 |
-
)
|
77 |
-
|
78 |
-
self._guidance_scale = guidance_scale
|
79 |
-
self._joint_attention_kwargs = joint_attention_kwargs
|
80 |
-
self._interrupt = False
|
81 |
-
|
82 |
-
# 2. Define call parameters
|
83 |
-
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
84 |
-
device = self._execution_device
|
85 |
-
|
86 |
-
# 3. Encode prompt
|
87 |
-
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
88 |
-
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
89 |
-
prompt=prompt,
|
90 |
-
prompt_2=prompt_2,
|
91 |
-
prompt_embeds=prompt_embeds,
|
92 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
93 |
-
device=device,
|
94 |
-
num_images_per_prompt=num_images_per_prompt,
|
95 |
-
max_sequence_length=max_sequence_length,
|
96 |
-
lora_scale=lora_scale,
|
97 |
-
)
|
98 |
-
# 4. Prepare latent variables
|
99 |
-
num_channels_latents = self.transformer.config.in_channels // 4
|
100 |
-
latents, latent_image_ids = self.prepare_latents(
|
101 |
-
batch_size * num_images_per_prompt,
|
102 |
-
num_channels_latents,
|
103 |
-
height,
|
104 |
-
width,
|
105 |
-
prompt_embeds.dtype,
|
106 |
-
device,
|
107 |
-
generator,
|
108 |
-
latents,
|
109 |
-
)
|
110 |
-
# 5. Prepare timesteps
|
111 |
-
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
112 |
-
image_seq_len = latents.shape[1]
|
113 |
-
mu = calculate_shift(
|
114 |
-
image_seq_len,
|
115 |
-
self.scheduler.config.base_image_seq_len,
|
116 |
-
self.scheduler.config.max_image_seq_len,
|
117 |
-
self.scheduler.config.base_shift,
|
118 |
-
self.scheduler.config.max_shift,
|
119 |
-
)
|
120 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
121 |
-
self.scheduler,
|
122 |
-
num_inference_steps,
|
123 |
-
device,
|
124 |
-
timesteps,
|
125 |
-
sigmas,
|
126 |
-
mu=mu,
|
127 |
-
)
|
128 |
-
self._num_timesteps = len(timesteps)
|
129 |
-
|
130 |
-
# Handle guidance
|
131 |
-
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
132 |
-
|
133 |
-
# 6. Denoising loop
|
134 |
-
for i, t in enumerate(timesteps):
|
135 |
-
if self.interrupt:
|
136 |
-
continue
|
137 |
-
|
138 |
-
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
139 |
-
|
140 |
-
noise_pred = self.transformer(
|
141 |
-
hidden_states=latents,
|
142 |
-
timestep=timestep / 1000,
|
143 |
-
guidance=guidance,
|
144 |
-
pooled_projections=pooled_prompt_embeds,
|
145 |
-
encoder_hidden_states=prompt_embeds,
|
146 |
-
txt_ids=text_ids,
|
147 |
-
img_ids=latent_image_ids,
|
148 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
149 |
-
return_dict=False,
|
150 |
-
)[0]
|
151 |
-
# Yield intermediate result
|
152 |
-
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
153 |
-
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
154 |
-
image = self.vae.decode(latents_for_image, return_dict=False)[0]
|
155 |
-
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
156 |
-
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
157 |
-
torch.cuda.empty_cache()
|
158 |
-
|
159 |
-
|
160 |
-
# Final image using good_vae
|
161 |
-
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
162 |
-
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
|
163 |
-
image = good_vae.decode(latents, return_dict=False)[0]
|
164 |
-
self.maybe_free_model_hooks()
|
165 |
-
torch.cuda.empty_cache()
|
166 |
-
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipelines.py
DELETED
@@ -1,1417 +0,0 @@
|
|
1 |
-
import importlib
|
2 |
-
import inspect
|
3 |
-
from typing import Union, List, Optional, Dict, Any, Tuple, Callable
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
from diffusers import StableDiffusionXLPipeline, StableDiffusionPipeline, LMSDiscreteScheduler, FluxPipeline
|
8 |
-
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps
|
9 |
-
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
10 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
11 |
-
# from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_k_diffusion import ModelWrapper
|
12 |
-
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
13 |
-
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg
|
14 |
-
from diffusers.utils import is_torch_xla_available
|
15 |
-
from k_diffusion.external import CompVisVDenoiser, CompVisDenoiser
|
16 |
-
from k_diffusion.sampling import get_sigmas_karras, BrownianTreeNoiseSampler
|
17 |
-
|
18 |
-
|
19 |
-
if is_torch_xla_available():
|
20 |
-
import torch_xla.core.xla_model as xm
|
21 |
-
|
22 |
-
XLA_AVAILABLE = True
|
23 |
-
else:
|
24 |
-
XLA_AVAILABLE = False
|
25 |
-
|
26 |
-
class StableDiffusionKDiffusionXLPipeline(StableDiffusionXLPipeline):
|
27 |
-
|
28 |
-
def __init__(
|
29 |
-
self,
|
30 |
-
vae: 'AutoencoderKL',
|
31 |
-
text_encoder: 'CLIPTextModel',
|
32 |
-
text_encoder_2: 'CLIPTextModelWithProjection',
|
33 |
-
tokenizer: 'CLIPTokenizer',
|
34 |
-
tokenizer_2: 'CLIPTokenizer',
|
35 |
-
unet: 'UNet2DConditionModel',
|
36 |
-
scheduler: 'KarrasDiffusionSchedulers',
|
37 |
-
force_zeros_for_empty_prompt: bool = True,
|
38 |
-
add_watermarker: Optional[bool] = None,
|
39 |
-
):
|
40 |
-
super().__init__(
|
41 |
-
vae=vae,
|
42 |
-
text_encoder=text_encoder,
|
43 |
-
text_encoder_2=text_encoder_2,
|
44 |
-
tokenizer=tokenizer,
|
45 |
-
tokenizer_2=tokenizer_2,
|
46 |
-
unet=unet,
|
47 |
-
scheduler=scheduler,
|
48 |
-
)
|
49 |
-
raise NotImplementedError("This pipeline is not implemented yet")
|
50 |
-
# self.sampler = None
|
51 |
-
# scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
|
52 |
-
# model = ModelWrapper(unet, scheduler.alphas_cumprod)
|
53 |
-
# if scheduler.config.prediction_type == "v_prediction":
|
54 |
-
# self.k_diffusion_model = CompVisVDenoiser(model)
|
55 |
-
# else:
|
56 |
-
# self.k_diffusion_model = CompVisDenoiser(model)
|
57 |
-
|
58 |
-
def set_scheduler(self, scheduler_type: str):
|
59 |
-
library = importlib.import_module("k_diffusion")
|
60 |
-
sampling = getattr(library, "sampling")
|
61 |
-
self.sampler = getattr(sampling, scheduler_type)
|
62 |
-
|
63 |
-
@torch.no_grad()
|
64 |
-
def __call__(
|
65 |
-
self,
|
66 |
-
prompt: Union[str, List[str]] = None,
|
67 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
68 |
-
height: Optional[int] = None,
|
69 |
-
width: Optional[int] = None,
|
70 |
-
num_inference_steps: int = 50,
|
71 |
-
denoising_end: Optional[float] = None,
|
72 |
-
guidance_scale: float = 5.0,
|
73 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
74 |
-
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
75 |
-
num_images_per_prompt: Optional[int] = 1,
|
76 |
-
eta: float = 0.0,
|
77 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
78 |
-
latents: Optional[torch.FloatTensor] = None,
|
79 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
80 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
81 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
82 |
-
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
83 |
-
output_type: Optional[str] = "pil",
|
84 |
-
return_dict: bool = True,
|
85 |
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
86 |
-
callback_steps: int = 1,
|
87 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
88 |
-
guidance_rescale: float = 0.0,
|
89 |
-
original_size: Optional[Tuple[int, int]] = None,
|
90 |
-
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
91 |
-
target_size: Optional[Tuple[int, int]] = None,
|
92 |
-
use_karras_sigmas: bool = False,
|
93 |
-
):
|
94 |
-
|
95 |
-
# 0. Default height and width to unet
|
96 |
-
height = height or self.default_sample_size * self.vae_scale_factor
|
97 |
-
width = width or self.default_sample_size * self.vae_scale_factor
|
98 |
-
|
99 |
-
original_size = original_size or (height, width)
|
100 |
-
target_size = target_size or (height, width)
|
101 |
-
|
102 |
-
# 1. Check inputs. Raise error if not correct
|
103 |
-
self.check_inputs(
|
104 |
-
prompt,
|
105 |
-
prompt_2,
|
106 |
-
height,
|
107 |
-
width,
|
108 |
-
callback_steps,
|
109 |
-
negative_prompt,
|
110 |
-
negative_prompt_2,
|
111 |
-
prompt_embeds,
|
112 |
-
negative_prompt_embeds,
|
113 |
-
pooled_prompt_embeds,
|
114 |
-
negative_pooled_prompt_embeds,
|
115 |
-
)
|
116 |
-
|
117 |
-
# 2. Define call parameters
|
118 |
-
if prompt is not None and isinstance(prompt, str):
|
119 |
-
batch_size = 1
|
120 |
-
elif prompt is not None and isinstance(prompt, list):
|
121 |
-
batch_size = len(prompt)
|
122 |
-
else:
|
123 |
-
batch_size = prompt_embeds.shape[0]
|
124 |
-
|
125 |
-
device = self._execution_device
|
126 |
-
|
127 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
128 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
129 |
-
# corresponds to doing no classifier free guidance.
|
130 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
131 |
-
|
132 |
-
# 3. Encode input prompt
|
133 |
-
text_encoder_lora_scale = (
|
134 |
-
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
135 |
-
)
|
136 |
-
(
|
137 |
-
prompt_embeds,
|
138 |
-
negative_prompt_embeds,
|
139 |
-
pooled_prompt_embeds,
|
140 |
-
negative_pooled_prompt_embeds,
|
141 |
-
) = self.encode_prompt(
|
142 |
-
prompt=prompt,
|
143 |
-
prompt_2=prompt_2,
|
144 |
-
device=device,
|
145 |
-
num_images_per_prompt=num_images_per_prompt,
|
146 |
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
147 |
-
negative_prompt=negative_prompt,
|
148 |
-
negative_prompt_2=negative_prompt_2,
|
149 |
-
prompt_embeds=prompt_embeds,
|
150 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
151 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
152 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
153 |
-
lora_scale=text_encoder_lora_scale,
|
154 |
-
)
|
155 |
-
|
156 |
-
# 4. Prepare timesteps
|
157 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
158 |
-
|
159 |
-
timesteps = self.scheduler.timesteps
|
160 |
-
|
161 |
-
# 5. Prepare latent variables
|
162 |
-
num_channels_latents = self.unet.config.in_channels
|
163 |
-
latents = self.prepare_latents(
|
164 |
-
batch_size * num_images_per_prompt,
|
165 |
-
num_channels_latents,
|
166 |
-
height,
|
167 |
-
width,
|
168 |
-
prompt_embeds.dtype,
|
169 |
-
device,
|
170 |
-
generator,
|
171 |
-
latents,
|
172 |
-
)
|
173 |
-
|
174 |
-
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
175 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
176 |
-
|
177 |
-
# 7. Prepare added time ids & embeddings
|
178 |
-
add_text_embeds = pooled_prompt_embeds
|
179 |
-
add_time_ids = self._get_add_time_ids(
|
180 |
-
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
181 |
-
)
|
182 |
-
|
183 |
-
if do_classifier_free_guidance:
|
184 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
185 |
-
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
186 |
-
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
187 |
-
|
188 |
-
prompt_embeds = prompt_embeds.to(device)
|
189 |
-
add_text_embeds = add_text_embeds.to(device)
|
190 |
-
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
191 |
-
|
192 |
-
# 8. Denoising loop
|
193 |
-
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
194 |
-
|
195 |
-
# 7.1 Apply denoising_end
|
196 |
-
if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1:
|
197 |
-
discrete_timestep_cutoff = int(
|
198 |
-
round(
|
199 |
-
self.scheduler.config.num_train_timesteps
|
200 |
-
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
201 |
-
)
|
202 |
-
)
|
203 |
-
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
204 |
-
timesteps = timesteps[:num_inference_steps]
|
205 |
-
|
206 |
-
# 5. Prepare sigmas
|
207 |
-
if use_karras_sigmas:
|
208 |
-
sigma_min: float = self.k_diffusion_model.sigmas[0].item()
|
209 |
-
sigma_max: float = self.k_diffusion_model.sigmas[-1].item()
|
210 |
-
sigmas = get_sigmas_karras(n=num_inference_steps, sigma_min=sigma_min, sigma_max=sigma_max)
|
211 |
-
sigmas = sigmas.to(device)
|
212 |
-
else:
|
213 |
-
sigmas = self.scheduler.sigmas
|
214 |
-
sigmas = sigmas.to(prompt_embeds.dtype)
|
215 |
-
|
216 |
-
# 5. Prepare latent variables
|
217 |
-
num_channels_latents = self.unet.config.in_channels
|
218 |
-
latents = self.prepare_latents(
|
219 |
-
batch_size * num_images_per_prompt,
|
220 |
-
num_channels_latents,
|
221 |
-
height,
|
222 |
-
width,
|
223 |
-
prompt_embeds.dtype,
|
224 |
-
device,
|
225 |
-
generator,
|
226 |
-
latents,
|
227 |
-
)
|
228 |
-
|
229 |
-
latents = latents * sigmas[0]
|
230 |
-
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
|
231 |
-
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(latents.device)
|
232 |
-
|
233 |
-
# 7. Define model function
|
234 |
-
def model_fn(x, t):
|
235 |
-
latent_model_input = torch.cat([x] * 2)
|
236 |
-
t = torch.cat([t] * 2)
|
237 |
-
|
238 |
-
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
239 |
-
# noise_pred = self.unet(
|
240 |
-
# latent_model_input,
|
241 |
-
# t,
|
242 |
-
# encoder_hidden_states=prompt_embeds,
|
243 |
-
# cross_attention_kwargs=cross_attention_kwargs,
|
244 |
-
# added_cond_kwargs=added_cond_kwargs,
|
245 |
-
# return_dict=False,
|
246 |
-
# )[0]
|
247 |
-
|
248 |
-
noise_pred = self.k_diffusion_model(
|
249 |
-
latent_model_input,
|
250 |
-
t,
|
251 |
-
encoder_hidden_states=prompt_embeds,
|
252 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
253 |
-
added_cond_kwargs=added_cond_kwargs,
|
254 |
-
return_dict=False,)[0]
|
255 |
-
|
256 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
257 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
258 |
-
return noise_pred
|
259 |
-
|
260 |
-
|
261 |
-
# 8. Run k-diffusion solver
|
262 |
-
sampler_kwargs = {}
|
263 |
-
# should work without it
|
264 |
-
noise_sampler_seed = None
|
265 |
-
|
266 |
-
|
267 |
-
if "noise_sampler" in inspect.signature(self.sampler).parameters:
|
268 |
-
min_sigma, max_sigma = sigmas[sigmas > 0].min(), sigmas.max()
|
269 |
-
noise_sampler = BrownianTreeNoiseSampler(latents, min_sigma, max_sigma, noise_sampler_seed)
|
270 |
-
sampler_kwargs["noise_sampler"] = noise_sampler
|
271 |
-
|
272 |
-
latents = self.sampler(model_fn, latents, sigmas, **sampler_kwargs)
|
273 |
-
|
274 |
-
if not output_type == "latent":
|
275 |
-
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
276 |
-
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
277 |
-
else:
|
278 |
-
image = latents
|
279 |
-
has_nsfw_concept = None
|
280 |
-
|
281 |
-
if has_nsfw_concept is None:
|
282 |
-
do_denormalize = [True] * image.shape[0]
|
283 |
-
else:
|
284 |
-
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
285 |
-
|
286 |
-
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
287 |
-
|
288 |
-
# Offload last model to CPU
|
289 |
-
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
290 |
-
self.final_offload_hook.offload()
|
291 |
-
|
292 |
-
if not return_dict:
|
293 |
-
return (image,)
|
294 |
-
|
295 |
-
return StableDiffusionXLPipelineOutput(images=image)
|
296 |
-
|
297 |
-
|
298 |
-
class CustomStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
299 |
-
|
300 |
-
def predict_noise(
|
301 |
-
self,
|
302 |
-
prompt: Union[str, List[str]] = None,
|
303 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
304 |
-
num_inference_steps: int = 50,
|
305 |
-
guidance_scale: float = 5.0,
|
306 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
307 |
-
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
308 |
-
num_images_per_prompt: Optional[int] = 1,
|
309 |
-
eta: float = 0.0,
|
310 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
311 |
-
latents: Optional[torch.FloatTensor] = None,
|
312 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
313 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
314 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
315 |
-
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
316 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
317 |
-
guidance_rescale: float = 0.0,
|
318 |
-
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
319 |
-
timestep: Optional[int] = None,
|
320 |
-
):
|
321 |
-
r"""
|
322 |
-
Function invoked when calling the pipeline for generation.
|
323 |
-
|
324 |
-
Args:
|
325 |
-
prompt (`str` or `List[str]`, *optional*):
|
326 |
-
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
327 |
-
instead.
|
328 |
-
prompt_2 (`str` or `List[str]`, *optional*):
|
329 |
-
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
330 |
-
used in both text-encoders
|
331 |
-
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
332 |
-
The height in pixels of the generated image.
|
333 |
-
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
334 |
-
The width in pixels of the generated image.
|
335 |
-
num_inference_steps (`int`, *optional*, defaults to 50):
|
336 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
337 |
-
expense of slower inference.
|
338 |
-
denoising_end (`float`, *optional*):
|
339 |
-
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
340 |
-
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
341 |
-
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
342 |
-
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
343 |
-
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
344 |
-
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
345 |
-
guidance_scale (`float`, *optional*, defaults to 7.5):
|
346 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
347 |
-
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
348 |
-
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
349 |
-
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
350 |
-
usually at the expense of lower image quality.
|
351 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
352 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
353 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
354 |
-
less than `1`).
|
355 |
-
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
356 |
-
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
357 |
-
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
358 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
359 |
-
The number of images to generate per prompt.
|
360 |
-
eta (`float`, *optional*, defaults to 0.0):
|
361 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
362 |
-
[`schedulers.DDIMScheduler`], will be ignored for others.
|
363 |
-
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
364 |
-
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
365 |
-
to make generation deterministic.
|
366 |
-
latents (`torch.FloatTensor`, *optional*):
|
367 |
-
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
368 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
369 |
-
tensor will ge generated by sampling using the supplied random `generator`.
|
370 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
371 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
372 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
373 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
374 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
375 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
376 |
-
argument.
|
377 |
-
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
378 |
-
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
379 |
-
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
380 |
-
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
381 |
-
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
382 |
-
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
383 |
-
input argument.
|
384 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
385 |
-
The output format of the generate image. Choose between
|
386 |
-
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
387 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
388 |
-
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
389 |
-
of a plain tuple.
|
390 |
-
callback (`Callable`, *optional*):
|
391 |
-
A function that will be called every `callback_steps` steps during inference. The function will be
|
392 |
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
393 |
-
callback_steps (`int`, *optional*, defaults to 1):
|
394 |
-
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
395 |
-
called at every step.
|
396 |
-
cross_attention_kwargs (`dict`, *optional*):
|
397 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
398 |
-
`self.processor` in
|
399 |
-
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
400 |
-
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
401 |
-
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
402 |
-
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
403 |
-
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
404 |
-
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
405 |
-
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
406 |
-
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
407 |
-
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
|
408 |
-
explained in section 2.2 of
|
409 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
410 |
-
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
411 |
-
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
412 |
-
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
413 |
-
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
414 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
415 |
-
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
416 |
-
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
417 |
-
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
418 |
-
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
419 |
-
|
420 |
-
Examples:
|
421 |
-
|
422 |
-
Returns:
|
423 |
-
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
424 |
-
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
425 |
-
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
426 |
-
"""
|
427 |
-
# if not predict_noise:
|
428 |
-
# # call parent
|
429 |
-
# return super().__call__(
|
430 |
-
# prompt=prompt,
|
431 |
-
# prompt_2=prompt_2,
|
432 |
-
# height=height,
|
433 |
-
# width=width,
|
434 |
-
# num_inference_steps=num_inference_steps,
|
435 |
-
# denoising_end=denoising_end,
|
436 |
-
# guidance_scale=guidance_scale,
|
437 |
-
# negative_prompt=negative_prompt,
|
438 |
-
# negative_prompt_2=negative_prompt_2,
|
439 |
-
# num_images_per_prompt=num_images_per_prompt,
|
440 |
-
# eta=eta,
|
441 |
-
# generator=generator,
|
442 |
-
# latents=latents,
|
443 |
-
# prompt_embeds=prompt_embeds,
|
444 |
-
# negative_prompt_embeds=negative_prompt_embeds,
|
445 |
-
# pooled_prompt_embeds=pooled_prompt_embeds,
|
446 |
-
# negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
447 |
-
# output_type=output_type,
|
448 |
-
# return_dict=return_dict,
|
449 |
-
# callback=callback,
|
450 |
-
# callback_steps=callback_steps,
|
451 |
-
# cross_attention_kwargs=cross_attention_kwargs,
|
452 |
-
# guidance_rescale=guidance_rescale,
|
453 |
-
# original_size=original_size,
|
454 |
-
# crops_coords_top_left=crops_coords_top_left,
|
455 |
-
# target_size=target_size,
|
456 |
-
# )
|
457 |
-
|
458 |
-
# 0. Default height and width to unet
|
459 |
-
height = self.default_sample_size * self.vae_scale_factor
|
460 |
-
width = self.default_sample_size * self.vae_scale_factor
|
461 |
-
|
462 |
-
original_size = (height, width)
|
463 |
-
target_size = (height, width)
|
464 |
-
|
465 |
-
# 2. Define call parameters
|
466 |
-
if prompt is not None and isinstance(prompt, str):
|
467 |
-
batch_size = 1
|
468 |
-
elif prompt is not None and isinstance(prompt, list):
|
469 |
-
batch_size = len(prompt)
|
470 |
-
else:
|
471 |
-
batch_size = prompt_embeds.shape[0]
|
472 |
-
|
473 |
-
device = self._execution_device
|
474 |
-
|
475 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
476 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
477 |
-
# corresponds to doing no classifier free guidance.
|
478 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
479 |
-
|
480 |
-
# 3. Encode input prompt
|
481 |
-
text_encoder_lora_scale = (
|
482 |
-
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
483 |
-
)
|
484 |
-
(
|
485 |
-
prompt_embeds,
|
486 |
-
negative_prompt_embeds,
|
487 |
-
pooled_prompt_embeds,
|
488 |
-
negative_pooled_prompt_embeds,
|
489 |
-
) = self.encode_prompt(
|
490 |
-
prompt=prompt,
|
491 |
-
prompt_2=prompt_2,
|
492 |
-
device=device,
|
493 |
-
num_images_per_prompt=num_images_per_prompt,
|
494 |
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
495 |
-
negative_prompt=negative_prompt,
|
496 |
-
negative_prompt_2=negative_prompt_2,
|
497 |
-
prompt_embeds=prompt_embeds,
|
498 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
499 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
500 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
501 |
-
lora_scale=text_encoder_lora_scale,
|
502 |
-
)
|
503 |
-
|
504 |
-
# 4. Prepare timesteps
|
505 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
506 |
-
|
507 |
-
# 5. Prepare latent variables
|
508 |
-
num_channels_latents = self.unet.config.in_channels
|
509 |
-
latents = self.prepare_latents(
|
510 |
-
batch_size * num_images_per_prompt,
|
511 |
-
num_channels_latents,
|
512 |
-
height,
|
513 |
-
width,
|
514 |
-
prompt_embeds.dtype,
|
515 |
-
device,
|
516 |
-
generator,
|
517 |
-
latents,
|
518 |
-
)
|
519 |
-
|
520 |
-
# 7. Prepare added time ids & embeddings
|
521 |
-
add_text_embeds = pooled_prompt_embeds
|
522 |
-
add_time_ids = self._get_add_time_ids(
|
523 |
-
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
524 |
-
).to(device) # TODO DOES NOT CAST ORIGINALLY
|
525 |
-
|
526 |
-
if do_classifier_free_guidance:
|
527 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
528 |
-
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
529 |
-
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
530 |
-
|
531 |
-
prompt_embeds = prompt_embeds.to(device)
|
532 |
-
add_text_embeds = add_text_embeds.to(device)
|
533 |
-
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
534 |
-
|
535 |
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
536 |
-
|
537 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep)
|
538 |
-
|
539 |
-
# predict the noise residual
|
540 |
-
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
541 |
-
noise_pred = self.unet(
|
542 |
-
latent_model_input,
|
543 |
-
timestep,
|
544 |
-
encoder_hidden_states=prompt_embeds,
|
545 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
546 |
-
added_cond_kwargs=added_cond_kwargs,
|
547 |
-
return_dict=False,
|
548 |
-
)[0]
|
549 |
-
|
550 |
-
# perform guidance
|
551 |
-
if do_classifier_free_guidance:
|
552 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
553 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
554 |
-
|
555 |
-
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
556 |
-
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
557 |
-
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
558 |
-
|
559 |
-
return noise_pred
|
560 |
-
|
561 |
-
def enable_model_cpu_offload(self, gpu_id=0):
|
562 |
-
print('Called cpu offload', gpu_id)
|
563 |
-
# fuck off
|
564 |
-
pass
|
565 |
-
|
566 |
-
|
567 |
-
class CustomStableDiffusionPipeline(StableDiffusionPipeline):
|
568 |
-
|
569 |
-
# replace the call so it matches SDXL call so we can use the same code and also stop early
|
570 |
-
def __call__(
|
571 |
-
self,
|
572 |
-
prompt: Union[str, List[str]] = None,
|
573 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
574 |
-
height: Optional[int] = None,
|
575 |
-
width: Optional[int] = None,
|
576 |
-
num_inference_steps: int = 50,
|
577 |
-
denoising_end: Optional[float] = None,
|
578 |
-
guidance_scale: float = 5.0,
|
579 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
580 |
-
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
581 |
-
num_images_per_prompt: Optional[int] = 1,
|
582 |
-
eta: float = 0.0,
|
583 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
584 |
-
latents: Optional[torch.FloatTensor] = None,
|
585 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
586 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
587 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
588 |
-
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
589 |
-
output_type: Optional[str] = "pil",
|
590 |
-
return_dict: bool = True,
|
591 |
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
592 |
-
callback_steps: int = 1,
|
593 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
594 |
-
guidance_rescale: float = 0.0,
|
595 |
-
original_size: Optional[Tuple[int, int]] = None,
|
596 |
-
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
597 |
-
target_size: Optional[Tuple[int, int]] = None,
|
598 |
-
):
|
599 |
-
# 0. Default height and width to unet
|
600 |
-
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
601 |
-
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
602 |
-
|
603 |
-
# 1. Check inputs. Raise error if not correct
|
604 |
-
self.check_inputs(
|
605 |
-
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
606 |
-
)
|
607 |
-
|
608 |
-
# 2. Define call parameters
|
609 |
-
if prompt is not None and isinstance(prompt, str):
|
610 |
-
batch_size = 1
|
611 |
-
elif prompt is not None and isinstance(prompt, list):
|
612 |
-
batch_size = len(prompt)
|
613 |
-
else:
|
614 |
-
batch_size = prompt_embeds.shape[0]
|
615 |
-
|
616 |
-
device = self._execution_device
|
617 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
618 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
619 |
-
# corresponds to doing no classifier free guidance.
|
620 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
621 |
-
|
622 |
-
# 3. Encode input prompt
|
623 |
-
text_encoder_lora_scale = (
|
624 |
-
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
625 |
-
)
|
626 |
-
prompt_embeds = self._encode_prompt(
|
627 |
-
prompt,
|
628 |
-
device,
|
629 |
-
num_images_per_prompt,
|
630 |
-
do_classifier_free_guidance,
|
631 |
-
negative_prompt,
|
632 |
-
prompt_embeds=prompt_embeds,
|
633 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
634 |
-
lora_scale=text_encoder_lora_scale,
|
635 |
-
)
|
636 |
-
|
637 |
-
# 4. Prepare timesteps
|
638 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
639 |
-
timesteps = self.scheduler.timesteps
|
640 |
-
|
641 |
-
# 5. Prepare latent variables
|
642 |
-
num_channels_latents = self.unet.config.in_channels
|
643 |
-
latents = self.prepare_latents(
|
644 |
-
batch_size * num_images_per_prompt,
|
645 |
-
num_channels_latents,
|
646 |
-
height,
|
647 |
-
width,
|
648 |
-
prompt_embeds.dtype,
|
649 |
-
device,
|
650 |
-
generator,
|
651 |
-
latents,
|
652 |
-
)
|
653 |
-
|
654 |
-
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
655 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
656 |
-
|
657 |
-
# 7. Denoising loop
|
658 |
-
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
659 |
-
|
660 |
-
# 7.1 Apply denoising_end
|
661 |
-
if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1:
|
662 |
-
discrete_timestep_cutoff = int(
|
663 |
-
round(
|
664 |
-
self.scheduler.config.num_train_timesteps
|
665 |
-
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
666 |
-
)
|
667 |
-
)
|
668 |
-
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
669 |
-
timesteps = timesteps[:num_inference_steps]
|
670 |
-
|
671 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
672 |
-
for i, t in enumerate(timesteps):
|
673 |
-
# expand the latents if we are doing classifier free guidance
|
674 |
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
675 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
676 |
-
|
677 |
-
# predict the noise residual
|
678 |
-
noise_pred = self.unet(
|
679 |
-
latent_model_input,
|
680 |
-
t,
|
681 |
-
encoder_hidden_states=prompt_embeds,
|
682 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
683 |
-
return_dict=False,
|
684 |
-
)[0]
|
685 |
-
|
686 |
-
# perform guidance
|
687 |
-
if do_classifier_free_guidance:
|
688 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
689 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
690 |
-
|
691 |
-
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
692 |
-
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
693 |
-
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
694 |
-
|
695 |
-
# compute the previous noisy sample x_t -> x_t-1
|
696 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
697 |
-
|
698 |
-
# call the callback, if provided
|
699 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
700 |
-
progress_bar.update()
|
701 |
-
if callback is not None and i % callback_steps == 0:
|
702 |
-
callback(i, t, latents)
|
703 |
-
|
704 |
-
if not output_type == "latent":
|
705 |
-
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
706 |
-
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
707 |
-
else:
|
708 |
-
image = latents
|
709 |
-
has_nsfw_concept = None
|
710 |
-
|
711 |
-
if has_nsfw_concept is None:
|
712 |
-
do_denormalize = [True] * image.shape[0]
|
713 |
-
else:
|
714 |
-
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
715 |
-
|
716 |
-
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
717 |
-
|
718 |
-
# Offload last model to CPU
|
719 |
-
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
720 |
-
self.final_offload_hook.offload()
|
721 |
-
|
722 |
-
if not return_dict:
|
723 |
-
return (image, has_nsfw_concept)
|
724 |
-
|
725 |
-
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
726 |
-
|
727 |
-
# some of the inputs are to keep it compatible with sdx
|
728 |
-
def predict_noise(
|
729 |
-
self,
|
730 |
-
prompt: Union[str, List[str]] = None,
|
731 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
732 |
-
num_inference_steps: int = 50,
|
733 |
-
guidance_scale: float = 5.0,
|
734 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
735 |
-
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
736 |
-
num_images_per_prompt: Optional[int] = 1,
|
737 |
-
eta: float = 0.0,
|
738 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
739 |
-
latents: Optional[torch.FloatTensor] = None,
|
740 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
741 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
742 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
743 |
-
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
744 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
745 |
-
guidance_rescale: float = 0.0,
|
746 |
-
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
747 |
-
timestep: Optional[int] = None,
|
748 |
-
):
|
749 |
-
|
750 |
-
# 0. Default height and width to unet
|
751 |
-
height = self.unet.config.sample_size * self.vae_scale_factor
|
752 |
-
width = self.unet.config.sample_size * self.vae_scale_factor
|
753 |
-
|
754 |
-
# 2. Define call parameters
|
755 |
-
if prompt is not None and isinstance(prompt, str):
|
756 |
-
batch_size = 1
|
757 |
-
elif prompt is not None and isinstance(prompt, list):
|
758 |
-
batch_size = len(prompt)
|
759 |
-
else:
|
760 |
-
batch_size = prompt_embeds.shape[0]
|
761 |
-
|
762 |
-
device = self._execution_device
|
763 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
764 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
765 |
-
# corresponds to doing no classifier free guidance.
|
766 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
767 |
-
|
768 |
-
# 3. Encode input prompt
|
769 |
-
text_encoder_lora_scale = (
|
770 |
-
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
771 |
-
)
|
772 |
-
prompt_embeds = self._encode_prompt(
|
773 |
-
prompt,
|
774 |
-
device,
|
775 |
-
num_images_per_prompt,
|
776 |
-
do_classifier_free_guidance,
|
777 |
-
negative_prompt,
|
778 |
-
prompt_embeds=prompt_embeds,
|
779 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
780 |
-
lora_scale=text_encoder_lora_scale,
|
781 |
-
)
|
782 |
-
|
783 |
-
# 4. Prepare timesteps
|
784 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
785 |
-
|
786 |
-
# 5. Prepare latent variables
|
787 |
-
num_channels_latents = self.unet.config.in_channels
|
788 |
-
latents = self.prepare_latents(
|
789 |
-
batch_size * num_images_per_prompt,
|
790 |
-
num_channels_latents,
|
791 |
-
height,
|
792 |
-
width,
|
793 |
-
prompt_embeds.dtype,
|
794 |
-
device,
|
795 |
-
generator,
|
796 |
-
latents,
|
797 |
-
)
|
798 |
-
|
799 |
-
# expand the latents if we are doing classifier free guidance
|
800 |
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
801 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep)
|
802 |
-
|
803 |
-
# predict the noise residual
|
804 |
-
noise_pred = self.unet(
|
805 |
-
latent_model_input,
|
806 |
-
timestep,
|
807 |
-
encoder_hidden_states=prompt_embeds,
|
808 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
809 |
-
return_dict=False,
|
810 |
-
)[0]
|
811 |
-
|
812 |
-
# perform guidance
|
813 |
-
if do_classifier_free_guidance:
|
814 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
815 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
816 |
-
|
817 |
-
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
818 |
-
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
819 |
-
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
820 |
-
|
821 |
-
return noise_pred
|
822 |
-
|
823 |
-
|
824 |
-
class StableDiffusionXLRefinerPipeline(StableDiffusionXLPipeline):
|
825 |
-
|
826 |
-
@torch.no_grad()
|
827 |
-
def __call__(
|
828 |
-
self,
|
829 |
-
prompt: Union[str, List[str]] = None,
|
830 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
831 |
-
height: Optional[int] = None,
|
832 |
-
width: Optional[int] = None,
|
833 |
-
num_inference_steps: int = 50,
|
834 |
-
denoising_end: Optional[float] = None,
|
835 |
-
denoising_start: Optional[float] = None,
|
836 |
-
guidance_scale: float = 5.0,
|
837 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
838 |
-
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
839 |
-
num_images_per_prompt: Optional[int] = 1,
|
840 |
-
eta: float = 0.0,
|
841 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
842 |
-
latents: Optional[torch.FloatTensor] = None,
|
843 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
844 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
845 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
846 |
-
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
847 |
-
output_type: Optional[str] = "pil",
|
848 |
-
return_dict: bool = True,
|
849 |
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
850 |
-
callback_steps: int = 1,
|
851 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
852 |
-
guidance_rescale: float = 0.0,
|
853 |
-
original_size: Optional[Tuple[int, int]] = None,
|
854 |
-
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
855 |
-
target_size: Optional[Tuple[int, int]] = None,
|
856 |
-
negative_original_size: Optional[Tuple[int, int]] = None,
|
857 |
-
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
858 |
-
negative_target_size: Optional[Tuple[int, int]] = None,
|
859 |
-
clip_skip: Optional[int] = None,
|
860 |
-
):
|
861 |
-
r"""
|
862 |
-
Function invoked when calling the pipeline for generation.
|
863 |
-
|
864 |
-
Args:
|
865 |
-
prompt (`str` or `List[str]`, *optional*):
|
866 |
-
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
867 |
-
instead.
|
868 |
-
prompt_2 (`str` or `List[str]`, *optional*):
|
869 |
-
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
870 |
-
used in both text-encoders
|
871 |
-
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
872 |
-
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
873 |
-
Anything below 512 pixels won't work well for
|
874 |
-
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
875 |
-
and checkpoints that are not specifically fine-tuned on low resolutions.
|
876 |
-
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
877 |
-
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
878 |
-
Anything below 512 pixels won't work well for
|
879 |
-
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
880 |
-
and checkpoints that are not specifically fine-tuned on low resolutions.
|
881 |
-
num_inference_steps (`int`, *optional*, defaults to 50):
|
882 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
883 |
-
expense of slower inference.
|
884 |
-
denoising_end (`float`, *optional*):
|
885 |
-
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
886 |
-
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
887 |
-
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
888 |
-
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
889 |
-
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
890 |
-
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
891 |
-
denoising_start (`float`, *optional*):
|
892 |
-
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
893 |
-
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
894 |
-
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
|
895 |
-
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
|
896 |
-
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image
|
897 |
-
Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
|
898 |
-
guidance_scale (`float`, *optional*, defaults to 5.0):
|
899 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
900 |
-
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
901 |
-
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
902 |
-
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
903 |
-
usually at the expense of lower image quality.
|
904 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
905 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
906 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
907 |
-
less than `1`).
|
908 |
-
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
909 |
-
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
910 |
-
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
911 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
912 |
-
The number of images to generate per prompt.
|
913 |
-
eta (`float`, *optional*, defaults to 0.0):
|
914 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
915 |
-
[`schedulers.DDIMScheduler`], will be ignored for others.
|
916 |
-
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
917 |
-
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
918 |
-
to make generation deterministic.
|
919 |
-
latents (`torch.FloatTensor`, *optional*):
|
920 |
-
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
921 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
922 |
-
tensor will ge generated by sampling using the supplied random `generator`.
|
923 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
924 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
925 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
926 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
927 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
928 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
929 |
-
argument.
|
930 |
-
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
931 |
-
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
932 |
-
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
933 |
-
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
934 |
-
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
935 |
-
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
936 |
-
input argument.
|
937 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
938 |
-
The output format of the generate image. Choose between
|
939 |
-
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
940 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
941 |
-
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
942 |
-
of a plain tuple.
|
943 |
-
callback (`Callable`, *optional*):
|
944 |
-
A function that will be called every `callback_steps` steps during inference. The function will be
|
945 |
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
946 |
-
callback_steps (`int`, *optional*, defaults to 1):
|
947 |
-
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
948 |
-
called at every step.
|
949 |
-
cross_attention_kwargs (`dict`, *optional*):
|
950 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
951 |
-
`self.processor` in
|
952 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
953 |
-
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
954 |
-
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
955 |
-
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
956 |
-
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
957 |
-
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
958 |
-
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
959 |
-
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
960 |
-
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
961 |
-
explained in section 2.2 of
|
962 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
963 |
-
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
964 |
-
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
965 |
-
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
966 |
-
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
967 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
968 |
-
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
969 |
-
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
970 |
-
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
971 |
-
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
972 |
-
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
973 |
-
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
974 |
-
micro-conditioning as explained in section 2.2 of
|
975 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
976 |
-
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
977 |
-
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
978 |
-
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
979 |
-
micro-conditioning as explained in section 2.2 of
|
980 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
981 |
-
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
982 |
-
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
983 |
-
To negatively condition the generation process based on a target image resolution. It should be as same
|
984 |
-
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
985 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
986 |
-
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
987 |
-
|
988 |
-
Examples:
|
989 |
-
|
990 |
-
Returns:
|
991 |
-
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
992 |
-
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
993 |
-
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
994 |
-
"""
|
995 |
-
# 0. Default height and width to unet
|
996 |
-
height = height or self.default_sample_size * self.vae_scale_factor
|
997 |
-
width = width or self.default_sample_size * self.vae_scale_factor
|
998 |
-
|
999 |
-
original_size = original_size or (height, width)
|
1000 |
-
target_size = target_size or (height, width)
|
1001 |
-
|
1002 |
-
# 1. Check inputs. Raise error if not correct
|
1003 |
-
self.check_inputs(
|
1004 |
-
prompt,
|
1005 |
-
prompt_2,
|
1006 |
-
height,
|
1007 |
-
width,
|
1008 |
-
callback_steps,
|
1009 |
-
negative_prompt,
|
1010 |
-
negative_prompt_2,
|
1011 |
-
prompt_embeds,
|
1012 |
-
negative_prompt_embeds,
|
1013 |
-
pooled_prompt_embeds,
|
1014 |
-
negative_pooled_prompt_embeds,
|
1015 |
-
)
|
1016 |
-
|
1017 |
-
# 2. Define call parameters
|
1018 |
-
if prompt is not None and isinstance(prompt, str):
|
1019 |
-
batch_size = 1
|
1020 |
-
elif prompt is not None and isinstance(prompt, list):
|
1021 |
-
batch_size = len(prompt)
|
1022 |
-
else:
|
1023 |
-
batch_size = prompt_embeds.shape[0]
|
1024 |
-
|
1025 |
-
device = self._execution_device
|
1026 |
-
|
1027 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1028 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1029 |
-
# corresponds to doing no classifier free guidance.
|
1030 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
1031 |
-
|
1032 |
-
# 3. Encode input prompt
|
1033 |
-
lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1034 |
-
|
1035 |
-
(
|
1036 |
-
prompt_embeds,
|
1037 |
-
negative_prompt_embeds,
|
1038 |
-
pooled_prompt_embeds,
|
1039 |
-
negative_pooled_prompt_embeds,
|
1040 |
-
) = self.encode_prompt(
|
1041 |
-
prompt=prompt,
|
1042 |
-
prompt_2=prompt_2,
|
1043 |
-
device=device,
|
1044 |
-
num_images_per_prompt=num_images_per_prompt,
|
1045 |
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
1046 |
-
negative_prompt=negative_prompt,
|
1047 |
-
negative_prompt_2=negative_prompt_2,
|
1048 |
-
prompt_embeds=prompt_embeds,
|
1049 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
1050 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
1051 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1052 |
-
lora_scale=lora_scale,
|
1053 |
-
clip_skip=clip_skip,
|
1054 |
-
)
|
1055 |
-
|
1056 |
-
# 4. Prepare timesteps
|
1057 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1058 |
-
|
1059 |
-
timesteps = self.scheduler.timesteps
|
1060 |
-
|
1061 |
-
# 5. Prepare latent variables
|
1062 |
-
num_channels_latents = self.unet.config.in_channels
|
1063 |
-
latents = self.prepare_latents(
|
1064 |
-
batch_size * num_images_per_prompt,
|
1065 |
-
num_channels_latents,
|
1066 |
-
height,
|
1067 |
-
width,
|
1068 |
-
prompt_embeds.dtype,
|
1069 |
-
device,
|
1070 |
-
generator,
|
1071 |
-
latents,
|
1072 |
-
)
|
1073 |
-
|
1074 |
-
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1075 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1076 |
-
|
1077 |
-
# 7. Prepare added time ids & embeddings
|
1078 |
-
add_text_embeds = pooled_prompt_embeds
|
1079 |
-
if self.text_encoder_2 is None:
|
1080 |
-
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1081 |
-
else:
|
1082 |
-
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1083 |
-
|
1084 |
-
add_time_ids = self._get_add_time_ids(
|
1085 |
-
original_size,
|
1086 |
-
crops_coords_top_left,
|
1087 |
-
target_size,
|
1088 |
-
dtype=prompt_embeds.dtype,
|
1089 |
-
text_encoder_projection_dim=text_encoder_projection_dim,
|
1090 |
-
)
|
1091 |
-
if negative_original_size is not None and negative_target_size is not None:
|
1092 |
-
negative_add_time_ids = self._get_add_time_ids(
|
1093 |
-
negative_original_size,
|
1094 |
-
negative_crops_coords_top_left,
|
1095 |
-
negative_target_size,
|
1096 |
-
dtype=prompt_embeds.dtype,
|
1097 |
-
text_encoder_projection_dim=text_encoder_projection_dim,
|
1098 |
-
)
|
1099 |
-
else:
|
1100 |
-
negative_add_time_ids = add_time_ids
|
1101 |
-
|
1102 |
-
if do_classifier_free_guidance:
|
1103 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1104 |
-
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1105 |
-
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
1106 |
-
|
1107 |
-
prompt_embeds = prompt_embeds.to(device)
|
1108 |
-
add_text_embeds = add_text_embeds.to(device)
|
1109 |
-
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1110 |
-
|
1111 |
-
# 8. Denoising loop
|
1112 |
-
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1113 |
-
|
1114 |
-
# 8.1 Apply denoising_end
|
1115 |
-
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
|
1116 |
-
discrete_timestep_cutoff = int(
|
1117 |
-
round(
|
1118 |
-
self.scheduler.config.num_train_timesteps
|
1119 |
-
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
1120 |
-
)
|
1121 |
-
)
|
1122 |
-
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
1123 |
-
timesteps = timesteps[:num_inference_steps]
|
1124 |
-
|
1125 |
-
# 8.2 Determine denoising_start
|
1126 |
-
denoising_start_index = 0
|
1127 |
-
if denoising_start is not None and isinstance(denoising_start, float) and denoising_start > 0 and denoising_start < 1:
|
1128 |
-
discrete_timestep_start = int(
|
1129 |
-
round(
|
1130 |
-
self.scheduler.config.num_train_timesteps
|
1131 |
-
- (denoising_start * self.scheduler.config.num_train_timesteps)
|
1132 |
-
)
|
1133 |
-
)
|
1134 |
-
denoising_start_index = len(list(filter(lambda ts: ts < discrete_timestep_start, timesteps)))
|
1135 |
-
|
1136 |
-
|
1137 |
-
with self.progress_bar(total=num_inference_steps - denoising_start_index) as progress_bar:
|
1138 |
-
for i, t in enumerate(timesteps, start=denoising_start_index):
|
1139 |
-
# expand the latents if we are doing classifier free guidance
|
1140 |
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1141 |
-
|
1142 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1143 |
-
|
1144 |
-
# predict the noise residual
|
1145 |
-
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1146 |
-
noise_pred = self.unet(
|
1147 |
-
latent_model_input,
|
1148 |
-
t,
|
1149 |
-
encoder_hidden_states=prompt_embeds,
|
1150 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1151 |
-
added_cond_kwargs=added_cond_kwargs,
|
1152 |
-
return_dict=False,
|
1153 |
-
)[0]
|
1154 |
-
|
1155 |
-
# perform guidance
|
1156 |
-
if do_classifier_free_guidance:
|
1157 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1158 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1159 |
-
|
1160 |
-
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
1161 |
-
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1162 |
-
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1163 |
-
|
1164 |
-
# compute the previous noisy sample x_t -> x_t-1
|
1165 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1166 |
-
|
1167 |
-
# call the callback, if provided
|
1168 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1169 |
-
progress_bar.update()
|
1170 |
-
if callback is not None and i % callback_steps == 0:
|
1171 |
-
step_idx = i // getattr(self.scheduler, "order", 1)
|
1172 |
-
callback(step_idx, t, latents)
|
1173 |
-
|
1174 |
-
if XLA_AVAILABLE:
|
1175 |
-
xm.mark_step()
|
1176 |
-
|
1177 |
-
if not output_type == "latent":
|
1178 |
-
# make sure the VAE is in float32 mode, as it overflows in float16
|
1179 |
-
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1180 |
-
|
1181 |
-
if needs_upcasting:
|
1182 |
-
self.upcast_vae()
|
1183 |
-
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1184 |
-
|
1185 |
-
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1186 |
-
|
1187 |
-
# cast back to fp16 if needed
|
1188 |
-
if needs_upcasting:
|
1189 |
-
self.vae.to(dtype=torch.float16)
|
1190 |
-
else:
|
1191 |
-
image = latents
|
1192 |
-
|
1193 |
-
if not output_type == "latent":
|
1194 |
-
# apply watermark if available
|
1195 |
-
if self.watermark is not None:
|
1196 |
-
image = self.watermark.apply_watermark(image)
|
1197 |
-
|
1198 |
-
image = self.image_processor.postprocess(image, output_type=output_type)
|
1199 |
-
|
1200 |
-
# Offload all models
|
1201 |
-
self.maybe_free_model_hooks()
|
1202 |
-
|
1203 |
-
if not return_dict:
|
1204 |
-
return (image,)
|
1205 |
-
|
1206 |
-
return StableDiffusionXLPipelineOutput(images=image)
|
1207 |
-
|
1208 |
-
|
1209 |
-
|
1210 |
-
|
1211 |
-
# TODO this is rough. Need to properly stack unconditional
|
1212 |
-
class FluxWithCFGPipeline(FluxPipeline):
|
1213 |
-
def __call__(
|
1214 |
-
self,
|
1215 |
-
prompt: Union[str, List[str]] = None,
|
1216 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
1217 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
1218 |
-
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
1219 |
-
height: Optional[int] = None,
|
1220 |
-
width: Optional[int] = None,
|
1221 |
-
num_inference_steps: int = 28,
|
1222 |
-
timesteps: List[int] = None,
|
1223 |
-
guidance_scale: float = 7.0,
|
1224 |
-
num_images_per_prompt: Optional[int] = 1,
|
1225 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1226 |
-
latents: Optional[torch.FloatTensor] = None,
|
1227 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1228 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1229 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1230 |
-
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1231 |
-
output_type: Optional[str] = "pil",
|
1232 |
-
return_dict: bool = True,
|
1233 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1234 |
-
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
1235 |
-
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1236 |
-
max_sequence_length: int = 512,
|
1237 |
-
):
|
1238 |
-
|
1239 |
-
height = height or self.default_sample_size * self.vae_scale_factor
|
1240 |
-
width = width or self.default_sample_size * self.vae_scale_factor
|
1241 |
-
|
1242 |
-
# 1. Check inputs. Raise error if not correct
|
1243 |
-
self.check_inputs(
|
1244 |
-
prompt,
|
1245 |
-
prompt_2,
|
1246 |
-
height,
|
1247 |
-
width,
|
1248 |
-
prompt_embeds=prompt_embeds,
|
1249 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
1250 |
-
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
1251 |
-
max_sequence_length=max_sequence_length,
|
1252 |
-
)
|
1253 |
-
|
1254 |
-
self._guidance_scale = guidance_scale
|
1255 |
-
self._joint_attention_kwargs = joint_attention_kwargs
|
1256 |
-
self._interrupt = False
|
1257 |
-
|
1258 |
-
# 2. Define call parameters
|
1259 |
-
if prompt is not None and isinstance(prompt, str):
|
1260 |
-
batch_size = 1
|
1261 |
-
elif prompt is not None and isinstance(prompt, list):
|
1262 |
-
batch_size = len(prompt)
|
1263 |
-
else:
|
1264 |
-
batch_size = prompt_embeds.shape[0]
|
1265 |
-
|
1266 |
-
device = self._execution_device
|
1267 |
-
|
1268 |
-
lora_scale = (
|
1269 |
-
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
1270 |
-
)
|
1271 |
-
(
|
1272 |
-
prompt_embeds,
|
1273 |
-
pooled_prompt_embeds,
|
1274 |
-
text_ids,
|
1275 |
-
) = self.encode_prompt(
|
1276 |
-
prompt=prompt,
|
1277 |
-
prompt_2=prompt_2,
|
1278 |
-
prompt_embeds=prompt_embeds,
|
1279 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
1280 |
-
device=device,
|
1281 |
-
num_images_per_prompt=num_images_per_prompt,
|
1282 |
-
max_sequence_length=max_sequence_length,
|
1283 |
-
lora_scale=lora_scale,
|
1284 |
-
)
|
1285 |
-
(
|
1286 |
-
negative_prompt_embeds,
|
1287 |
-
negative_pooled_prompt_embeds,
|
1288 |
-
negative_text_ids,
|
1289 |
-
) = self.encode_prompt(
|
1290 |
-
prompt=negative_prompt,
|
1291 |
-
prompt_2=negative_prompt_2,
|
1292 |
-
prompt_embeds=negative_prompt_embeds,
|
1293 |
-
pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1294 |
-
device=device,
|
1295 |
-
num_images_per_prompt=num_images_per_prompt,
|
1296 |
-
max_sequence_length=max_sequence_length,
|
1297 |
-
lora_scale=lora_scale,
|
1298 |
-
)
|
1299 |
-
|
1300 |
-
# 4. Prepare latent variables
|
1301 |
-
num_channels_latents = self.transformer.config.in_channels // 4
|
1302 |
-
latents, latent_image_ids = self.prepare_latents(
|
1303 |
-
batch_size * num_images_per_prompt,
|
1304 |
-
num_channels_latents,
|
1305 |
-
height,
|
1306 |
-
width,
|
1307 |
-
prompt_embeds.dtype,
|
1308 |
-
device,
|
1309 |
-
generator,
|
1310 |
-
latents,
|
1311 |
-
)
|
1312 |
-
|
1313 |
-
# 5. Prepare timesteps
|
1314 |
-
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
1315 |
-
image_seq_len = latents.shape[1]
|
1316 |
-
mu = calculate_shift(
|
1317 |
-
image_seq_len,
|
1318 |
-
self.scheduler.config.base_image_seq_len,
|
1319 |
-
self.scheduler.config.max_image_seq_len,
|
1320 |
-
self.scheduler.config.base_shift,
|
1321 |
-
self.scheduler.config.max_shift,
|
1322 |
-
)
|
1323 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
1324 |
-
self.scheduler,
|
1325 |
-
num_inference_steps,
|
1326 |
-
device,
|
1327 |
-
timesteps,
|
1328 |
-
sigmas,
|
1329 |
-
mu=mu,
|
1330 |
-
)
|
1331 |
-
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1332 |
-
self._num_timesteps = len(timesteps)
|
1333 |
-
|
1334 |
-
# 6. Denoising loop
|
1335 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1336 |
-
for i, t in enumerate(timesteps):
|
1337 |
-
if self.interrupt:
|
1338 |
-
continue
|
1339 |
-
|
1340 |
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1341 |
-
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
1342 |
-
|
1343 |
-
# handle guidance
|
1344 |
-
if self.transformer.config.guidance_embeds:
|
1345 |
-
guidance = torch.tensor([guidance_scale], device=device)
|
1346 |
-
guidance = guidance.expand(latents.shape[0])
|
1347 |
-
else:
|
1348 |
-
guidance = None
|
1349 |
-
|
1350 |
-
noise_pred_text = self.transformer(
|
1351 |
-
hidden_states=latents,
|
1352 |
-
timestep=timestep / 1000,
|
1353 |
-
guidance=guidance,
|
1354 |
-
pooled_projections=pooled_prompt_embeds,
|
1355 |
-
encoder_hidden_states=prompt_embeds,
|
1356 |
-
txt_ids=text_ids,
|
1357 |
-
img_ids=latent_image_ids,
|
1358 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
1359 |
-
return_dict=False,
|
1360 |
-
)[0]
|
1361 |
-
|
1362 |
-
# todo combine these
|
1363 |
-
noise_pred_uncond = self.transformer(
|
1364 |
-
hidden_states=latents,
|
1365 |
-
timestep=timestep / 1000,
|
1366 |
-
guidance=guidance,
|
1367 |
-
pooled_projections=negative_pooled_prompt_embeds,
|
1368 |
-
encoder_hidden_states=negative_prompt_embeds,
|
1369 |
-
txt_ids=negative_text_ids,
|
1370 |
-
img_ids=latent_image_ids,
|
1371 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
1372 |
-
return_dict=False,
|
1373 |
-
)[0]
|
1374 |
-
|
1375 |
-
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1376 |
-
|
1377 |
-
# compute the previous noisy sample x_t -> x_t-1
|
1378 |
-
latents_dtype = latents.dtype
|
1379 |
-
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
1380 |
-
|
1381 |
-
if latents.dtype != latents_dtype:
|
1382 |
-
if torch.backends.mps.is_available():
|
1383 |
-
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1384 |
-
latents = latents.to(latents_dtype)
|
1385 |
-
|
1386 |
-
if callback_on_step_end is not None:
|
1387 |
-
callback_kwargs = {}
|
1388 |
-
for k in callback_on_step_end_tensor_inputs:
|
1389 |
-
callback_kwargs[k] = locals()[k]
|
1390 |
-
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1391 |
-
|
1392 |
-
latents = callback_outputs.pop("latents", latents)
|
1393 |
-
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1394 |
-
|
1395 |
-
# call the callback, if provided
|
1396 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1397 |
-
progress_bar.update()
|
1398 |
-
|
1399 |
-
if XLA_AVAILABLE:
|
1400 |
-
xm.mark_step()
|
1401 |
-
|
1402 |
-
if output_type == "latent":
|
1403 |
-
image = latents
|
1404 |
-
|
1405 |
-
else:
|
1406 |
-
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
1407 |
-
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
1408 |
-
image = self.vae.decode(latents, return_dict=False)[0]
|
1409 |
-
image = self.image_processor.postprocess(image, output_type=output_type)
|
1410 |
-
|
1411 |
-
# Offload all models
|
1412 |
-
self.maybe_free_model_hooks()
|
1413 |
-
|
1414 |
-
if not return_dict:
|
1415 |
-
return (image,)
|
1416 |
-
|
1417 |
-
return FluxPipelineOutput(images=image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion_model.py
DELETED
The diff for this file is too large to render.
See raw diff
|
|