gokaygokay commited on
Commit
634e1a5
·
1 Parent(s): b35117d
Files changed (2) hide show
  1. app.py +0 -1
  2. flux_inference.py +665 -0
app.py CHANGED
@@ -90,7 +90,6 @@ print('Quantizing, please wait...')
90
  # Try qint8 if qfloat8 produces invalid values
91
  quantize(pipe.transformer, qfloat8) # Consider changing to qint8 if you get invalid values
92
  freeze(pipe.transformer)
93
- pipe.transformer.to(device, dtype=torch.bfloat16)
94
  print('Model quantized!')
95
  pipe.enable_model_cpu_offload()
96
 
 
90
  # Try qint8 if qfloat8 produces invalid values
91
  quantize(pipe.transformer, qfloat8) # Consider changing to qint8 if you get invalid values
92
  freeze(pipe.transformer)
 
93
  print('Model quantized!')
94
  pipe.enable_model_cpu_offload()
95
 
flux_inference.py ADDED
@@ -0,0 +1,665 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import inspect
2
+ from typing import Any, Callable, Dict, List, Optional, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
7
+
8
+ import gc
9
+ from diffusers.image_processor import VaeImageProcessor
10
+ from diffusers.loaders import FluxLoraLoaderMixin
11
+ from diffusers.models.autoencoders import AutoencoderKL
12
+ from diffusers.models.transformers import FluxTransformer2DModel
13
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
14
+ from diffusers.utils import (
15
+ USE_PEFT_BACKEND,
16
+ make_image_grid,
17
+ scale_lora_layers,
18
+ unscale_lora_layers,
19
+ )
20
+ from diffusers.utils.torch_utils import randn_tensor
21
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
22
+ from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps
23
+ from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
24
+ import time
25
+
26
+ import torch
27
+ from optimum.quanto import quantize, qfloat8, freeze
28
+
29
+
30
+ st= time.time()
31
+ class FluxPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
32
+ r"""
33
+ The Flux pipeline for text-to-image generation.
34
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
35
+ Args:
36
+ transformer ([`FluxTransformer2DModel`]):
37
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
38
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
39
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
40
+ vae ([`AutoencoderKL`]):
41
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
42
+ text_encoder ([`CLIPTextModel`]):
43
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
44
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
45
+ text_encoder_2 ([`T5EncoderModel`]):
46
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
47
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
48
+ tokenizer (`CLIPTokenizer`):
49
+ Tokenizer of class
50
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
51
+ tokenizer_2 (`T5TokenizerFast`):
52
+ Second Tokenizer of class
53
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
54
+ """
55
+
56
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
57
+ _optional_components = []
58
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
59
+
60
+ def __init__(
61
+ self,
62
+ scheduler: FlowMatchEulerDiscreteScheduler,
63
+ vae: AutoencoderKL,
64
+ text_encoder: CLIPTextModel,
65
+ tokenizer: CLIPTokenizer,
66
+ text_encoder_2: T5EncoderModel,
67
+ tokenizer_2: T5TokenizerFast,
68
+ transformer: FluxTransformer2DModel,
69
+ ):
70
+ super().__init__()
71
+
72
+ self.register_modules(
73
+ vae=vae,
74
+ text_encoder=text_encoder,
75
+ text_encoder_2=text_encoder_2,
76
+ tokenizer=tokenizer,
77
+ tokenizer_2=tokenizer_2,
78
+ transformer=transformer,
79
+ scheduler=scheduler,
80
+ )
81
+ self.vae_scale_factor = (
82
+ 2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
83
+ )
84
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
85
+ self.tokenizer_max_length = (
86
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
87
+ )
88
+ self.default_sample_size = 64
89
+
90
+ def _get_t5_prompt_embeds(
91
+ self,
92
+ prompt: Union[str, List[str]] = None,
93
+ num_images_per_prompt: int = 1,
94
+ max_sequence_length: int = 512,
95
+ device: Optional[torch.device] = None,
96
+ dtype: Optional[torch.dtype] = None,
97
+ ):
98
+ device = device or self._execution_device
99
+ dtype = dtype or self.text_encoder.dtype
100
+
101
+ prompt = [prompt] if isinstance(prompt, str) else prompt
102
+ batch_size = len(prompt)
103
+
104
+ text_inputs = self.tokenizer_2(
105
+ prompt,
106
+ padding="max_length",
107
+ max_length=max_sequence_length,
108
+ truncation=True,
109
+ return_length=False,
110
+ return_overflowing_tokens=False,
111
+ return_tensors="pt",
112
+ )
113
+ text_input_ids = text_inputs.input_ids
114
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
115
+
116
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
117
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
118
+
119
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
120
+
121
+ dtype = self.text_encoder_2.dtype
122
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
123
+
124
+ _, seq_len, _ = prompt_embeds.shape
125
+
126
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
127
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
128
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
129
+
130
+ return prompt_embeds
131
+
132
+ def _get_clip_prompt_embeds(
133
+ self,
134
+ prompt: Union[str, List[str]],
135
+ num_images_per_prompt: int = 1,
136
+ device: Optional[torch.device] = None,
137
+ ):
138
+ device = device or self._execution_device
139
+
140
+ prompt = [prompt] if isinstance(prompt, str) else prompt
141
+ batch_size = len(prompt)
142
+
143
+ text_inputs = self.tokenizer(
144
+ prompt,
145
+ padding="max_length",
146
+ max_length=self.tokenizer_max_length,
147
+ truncation=True,
148
+ return_overflowing_tokens=False,
149
+ return_length=False,
150
+ return_tensors="pt",
151
+ )
152
+
153
+ text_input_ids = text_inputs.input_ids
154
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
155
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
156
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
157
+
158
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
159
+
160
+ # Use pooled output of CLIPTextModel
161
+ prompt_embeds = prompt_embeds.pooler_output
162
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
163
+
164
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
165
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
166
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
167
+
168
+ return prompt_embeds
169
+
170
+ def encode_prompt(
171
+ self,
172
+ prompt: Union[str, List[str]],
173
+ prompt_2: Union[str, List[str]],
174
+ device: Optional[torch.device] = None,
175
+ num_images_per_prompt: int = 1,
176
+ prompt_embeds: Optional[torch.FloatTensor] = None,
177
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
178
+ max_sequence_length: int = 512,
179
+ lora_scale: Optional[float] = None,
180
+ ):
181
+ r"""
182
+ Args:
183
+ prompt (`str` or `List[str]`, *optional*):
184
+ prompt to be encoded
185
+ prompt_2 (`str` or `List[str]`, *optional*):
186
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
187
+ used in all text-encoders
188
+ device: (`torch.device`):
189
+ torch device
190
+ num_images_per_prompt (`int`):
191
+ number of images that should be generated per prompt
192
+ prompt_embeds (`torch.FloatTensor`, *optional*):
193
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
194
+ provided, text embeddings will be generated from `prompt` input argument.
195
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
196
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
197
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
198
+ lora_scale (`float`, *optional*):
199
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
200
+ """
201
+ device = device or self._execution_device
202
+
203
+ # set lora scale so that monkey patched LoRA
204
+ # function of text encoder can correctly access it
205
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
206
+ self._lora_scale = lora_scale
207
+
208
+ # dynamically adjust the LoRA scale
209
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
210
+ scale_lora_layers(self.text_encoder, lora_scale)
211
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
212
+ scale_lora_layers(self.text_encoder_2, lora_scale)
213
+
214
+ prompt = [prompt] if isinstance(prompt, str) else prompt
215
+ if prompt is not None:
216
+ batch_size = len(prompt)
217
+ else:
218
+ batch_size = prompt_embeds.shape[0]
219
+
220
+ if prompt_embeds is None:
221
+ prompt_2 = prompt_2 or prompt
222
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
223
+
224
+ # We only use the pooled prompt output from the CLIPTextModel
225
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
226
+ prompt=prompt,
227
+ device=device,
228
+ num_images_per_prompt=num_images_per_prompt,
229
+ )
230
+ prompt_embeds = self._get_t5_prompt_embeds(
231
+ prompt=prompt_2,
232
+ num_images_per_prompt=num_images_per_prompt,
233
+ max_sequence_length=max_sequence_length,
234
+ device=device,
235
+ )
236
+
237
+ if self.text_encoder is not None:
238
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
239
+ # Retrieve the original scale by scaling back the LoRA layers
240
+ unscale_lora_layers(self.text_encoder, lora_scale)
241
+
242
+ if self.text_encoder_2 is not None:
243
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
244
+ # Retrieve the original scale by scaling back the LoRA layers
245
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
246
+
247
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
248
+ text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
249
+ text_ids = text_ids.repeat(num_images_per_prompt, 1, 1)
250
+
251
+ return prompt_embeds, pooled_prompt_embeds, text_ids
252
+
253
+ def check_inputs(
254
+ self,
255
+ prompt,
256
+ prompt_2,
257
+ height,
258
+ width,
259
+ prompt_embeds=None,
260
+ pooled_prompt_embeds=None,
261
+ callback_on_step_end_tensor_inputs=None,
262
+ max_sequence_length=None,
263
+ ):
264
+ if height % 8 != 0 or width % 8 != 0:
265
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
266
+
267
+ if callback_on_step_end_tensor_inputs is not None and not all(
268
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
269
+ ):
270
+ raise ValueError(
271
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
272
+ )
273
+
274
+ if prompt is not None and prompt_embeds is not None:
275
+ raise ValueError(
276
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
277
+ " only forward one of the two."
278
+ )
279
+ elif prompt_2 is not None and prompt_embeds is not None:
280
+ raise ValueError(
281
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
282
+ " only forward one of the two."
283
+ )
284
+ elif prompt is None and prompt_embeds is None:
285
+ raise ValueError(
286
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
287
+ )
288
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
289
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
290
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
291
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
292
+
293
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
294
+ raise ValueError(
295
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
296
+ )
297
+
298
+ if max_sequence_length is not None and max_sequence_length > 512:
299
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
300
+
301
+ @staticmethod
302
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
303
+ latent_image_ids = torch.zeros(height // 2, width // 2, 3)
304
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
305
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
306
+
307
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
308
+
309
+ latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
310
+ latent_image_ids = latent_image_ids.reshape(
311
+ batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
312
+ )
313
+
314
+ return latent_image_ids.to(device=device, dtype=dtype)
315
+
316
+ @staticmethod
317
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
318
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
319
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
320
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
321
+
322
+ return latents
323
+
324
+ @staticmethod
325
+ def _unpack_latents(latents, height, width, vae_scale_factor):
326
+ batch_size, num_patches, channels = latents.shape
327
+
328
+ height = height // vae_scale_factor
329
+ width = width // vae_scale_factor
330
+
331
+ latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
332
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
333
+
334
+ latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
335
+
336
+ return latents
337
+
338
+ def prepare_latents(
339
+ self,
340
+ batch_size,
341
+ num_channels_latents,
342
+ height,
343
+ width,
344
+ dtype,
345
+ device,
346
+ generator,
347
+ latents=None,
348
+ ):
349
+ height = 2 * (int(height) // self.vae_scale_factor)
350
+ width = 2 * (int(width) // self.vae_scale_factor)
351
+
352
+ shape = (batch_size, num_channels_latents, height, width)
353
+
354
+ if latents is not None:
355
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
356
+ return latents.to(device=device, dtype=dtype), latent_image_ids
357
+
358
+ if isinstance(generator, list) and len(generator) != batch_size:
359
+ raise ValueError(
360
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
361
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
362
+ )
363
+
364
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
365
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
366
+
367
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
368
+
369
+ return latents, latent_image_ids
370
+
371
+ @property
372
+ def guidance_scale(self):
373
+ return self._guidance_scale
374
+
375
+ @property
376
+ def joint_attention_kwargs(self):
377
+ return self._joint_attention_kwargs
378
+
379
+ @property
380
+ def num_timesteps(self):
381
+ return self._num_timesteps
382
+
383
+ @property
384
+ def interrupt(self):
385
+ return self._interrupt
386
+
387
+ @torch.no_grad()
388
+ def __call__(
389
+ self,
390
+ prompt: Union[str, List[str]] = None,
391
+ prompt_2: Optional[Union[str, List[str]]] = None,
392
+ height: Optional[int] = None,
393
+ width: Optional[int] = None,
394
+ num_inference_steps: int = 28,
395
+ timesteps: List[int] = None,
396
+ guidance_scale: float = 3.5,
397
+ num_images_per_prompt: Optional[int] = 1,
398
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
399
+ latents: Optional[torch.FloatTensor] = None,
400
+ prompt_embeds: Optional[torch.FloatTensor] = None,
401
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
402
+ output_type: Optional[str] = "pil",
403
+ return_dict: bool = True,
404
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
405
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
406
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
407
+ max_sequence_length: int = 512,
408
+ fake_guidance_scale: float = 3.5,
409
+ timestep_to_start_cfg: int = 0,
410
+ ):
411
+ r"""
412
+ Function invoked when calling the pipeline for generation.
413
+ Args:
414
+ prompt (`str` or `List[str]`, *optional*):
415
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
416
+ instead.
417
+ prompt_2 (`str` or `List[str]`, *optional*):
418
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
419
+ will be used instead
420
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
421
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
422
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
423
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
424
+ num_inference_steps (`int`, *optional*, defaults to 50):
425
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
426
+ expense of slower inference.
427
+ timesteps (`List[int]`, *optional*):
428
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
429
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
430
+ passed will be used. Must be in descending order.
431
+ guidance_scale (`float`, *optional*, defaults to 7.0):
432
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
433
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
434
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
435
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
436
+ usually at the expense of lower image quality.
437
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
438
+ The number of images to generate per prompt.
439
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
440
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
441
+ to make generation deterministic.
442
+ latents (`torch.FloatTensor`, *optional*):
443
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
444
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
445
+ tensor will ge generated by sampling using the supplied random `generator`.
446
+ prompt_embeds (`torch.FloatTensor`, *optional*):
447
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
448
+ provided, text embeddings will be generated from `prompt` input argument.
449
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
450
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
451
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
452
+ output_type (`str`, *optional*, defaults to `"pil"`):
453
+ The output format of the generate image. Choose between
454
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
455
+ return_dict (`bool`, *optional*, defaults to `True`):
456
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
457
+ joint_attention_kwargs (`dict`, *optional*):
458
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
459
+ `self.processor` in
460
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
461
+ callback_on_step_end (`Callable`, *optional*):
462
+ A function that calls at the end of each denoising steps during the inference. The function is called
463
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
464
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
465
+ `callback_on_step_end_tensor_inputs`.
466
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
467
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
468
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
469
+ `._callback_tensor_inputs` attribute of your pipeline class.
470
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
471
+ Examples:
472
+ Returns:
473
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
474
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
475
+ images.
476
+ """
477
+
478
+ height = height or self.default_sample_size * self.vae_scale_factor
479
+ width = width or self.default_sample_size * self.vae_scale_factor
480
+
481
+ # 1. Check inputs. Raise error if not correct
482
+ self.check_inputs(
483
+ prompt,
484
+ prompt_2,
485
+ height,
486
+ width,
487
+ prompt_embeds=prompt_embeds,
488
+ pooled_prompt_embeds=pooled_prompt_embeds,
489
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
490
+ max_sequence_length=max_sequence_length,
491
+ )
492
+
493
+ self._guidance_scale = guidance_scale
494
+ self._joint_attention_kwargs = joint_attention_kwargs
495
+ self._interrupt = False
496
+
497
+ # 2. Define call parameters
498
+ if prompt is not None and isinstance(prompt, str):
499
+ batch_size = 1
500
+ elif prompt is not None and isinstance(prompt, list):
501
+ batch_size = len(prompt)
502
+ else:
503
+ batch_size = prompt_embeds.shape[0]
504
+
505
+ device = self._execution_device
506
+
507
+ lora_scale = (
508
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
509
+ )
510
+ (
511
+ prompt_embeds,
512
+ pooled_prompt_embeds,
513
+ text_ids,
514
+ ) = self.encode_prompt(
515
+ prompt=prompt,
516
+ prompt_2=prompt_2,
517
+ prompt_embeds=prompt_embeds,
518
+ pooled_prompt_embeds=pooled_prompt_embeds,
519
+ device=device,
520
+ num_images_per_prompt=num_images_per_prompt,
521
+ max_sequence_length=max_sequence_length,
522
+ lora_scale=lora_scale,
523
+ )
524
+
525
+ negative_prompt_embeds = None
526
+ negative_pooled_prompt_embeds = None
527
+ negative_text_ids = None
528
+ (
529
+ negative_prompt_embeds,
530
+ negative_pooled_prompt_embeds,
531
+ negative_text_ids,
532
+ ) = self.encode_prompt(
533
+ prompt="",
534
+ prompt_2="",
535
+ prompt_embeds=None,
536
+ pooled_prompt_embeds=None,
537
+ device=device,
538
+ num_images_per_prompt=num_images_per_prompt,
539
+ max_sequence_length=max_sequence_length,
540
+ lora_scale=lora_scale,
541
+ )
542
+
543
+ # 4. Prepare latent variables
544
+ num_channels_latents = self.transformer.config.in_channels // 4
545
+ latents, latent_image_ids = self.prepare_latents(
546
+ batch_size * num_images_per_prompt,
547
+ num_channels_latents,
548
+ height,
549
+ width,
550
+ prompt_embeds.dtype,
551
+ device,
552
+ generator,
553
+ latents,
554
+ )
555
+
556
+ # 5. Prepare timesteps
557
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
558
+ image_seq_len = latents.shape[1]
559
+ mu = calculate_shift(
560
+ image_seq_len,
561
+ self.scheduler.config.base_image_seq_len,
562
+ self.scheduler.config.max_image_seq_len,
563
+ self.scheduler.config.base_shift,
564
+ self.scheduler.config.max_shift,
565
+ )
566
+ timesteps, num_inference_steps = retrieve_timesteps(
567
+ self.scheduler,
568
+ num_inference_steps,
569
+ device,
570
+ timesteps,
571
+ sigmas,
572
+ mu=mu,
573
+ )
574
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
575
+ self._num_timesteps = len(timesteps)
576
+
577
+ # 6. Denoising loop
578
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
579
+ for i, t in enumerate(timesteps):
580
+ if self.interrupt:
581
+ continue
582
+
583
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
584
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
585
+
586
+ # handle guidance
587
+ if self.transformer.config.guidance_embeds:
588
+ guidance = torch.tensor([fake_guidance_scale], device=device)
589
+ guidance = guidance.expand(latents.shape[0])
590
+ else:
591
+ guidance = None
592
+
593
+ noise_pred = self.transformer(
594
+ hidden_states=latents,
595
+ # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
596
+ timestep=timestep / 1000,
597
+ guidance=guidance,
598
+ pooled_projections=pooled_prompt_embeds,
599
+ encoder_hidden_states=prompt_embeds,
600
+ txt_ids=text_ids,
601
+ img_ids=latent_image_ids,
602
+ joint_attention_kwargs=self.joint_attention_kwargs,
603
+ return_dict=False,
604
+ )[0]
605
+
606
+ if i >= timestep_to_start_cfg:
607
+ noise_pred_uncond = self.transformer(
608
+ hidden_states=latents,
609
+ # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
610
+ timestep=timestep / 1000,
611
+ guidance=guidance,
612
+ pooled_projections=negative_pooled_prompt_embeds,
613
+ encoder_hidden_states=negative_prompt_embeds,
614
+ txt_ids=negative_text_ids,
615
+ img_ids=latent_image_ids,
616
+ joint_attention_kwargs=self.joint_attention_kwargs,
617
+ return_dict=False,
618
+ )[0]
619
+
620
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred - noise_pred_uncond)
621
+
622
+ # compute the previous noisy sample x_t -> x_t-1
623
+ latents_dtype = latents.dtype
624
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
625
+
626
+ if latents.dtype != latents_dtype:
627
+ if torch.backends.mps.is_available():
628
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
629
+ latents = latents.to(latents_dtype)
630
+
631
+ if callback_on_step_end is not None:
632
+ callback_kwargs = {}
633
+ for k in callback_on_step_end_tensor_inputs:
634
+ callback_kwargs[k] = locals()[k]
635
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
636
+
637
+ latents = callback_outputs.pop("latents", latents)
638
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
639
+
640
+ # call the callback, if provided
641
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
642
+ progress_bar.update()
643
+
644
+ if output_type == "latent":
645
+ image = latents
646
+
647
+ else:
648
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
649
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
650
+ image = self.vae.decode(latents, return_dict=False)[0]
651
+ image = self.image_processor.postprocess(image, output_type=output_type)
652
+
653
+ # Offload all models
654
+ self.maybe_free_model_hooks()
655
+
656
+ if not return_dict:
657
+ return (image,)
658
+
659
+ return FluxPipelineOutput(images=image)
660
+
661
+ def flush():
662
+ gc.collect()
663
+ torch.cuda.empty_cache()
664
+ # torch.cuda.reset_max_memory_allocated()
665
+ # torch.cuda.reset_peak_memory_stats()