Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ PyTorch ViT model.""" | |
| import collections.abc | |
| import math | |
| from typing import Dict, List, Optional, Set, Tuple, Union | |
| import torch | |
| from torch import nn | |
| from transformers.activations import ACT2FN | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutput, | |
| BaseModelOutputWithPooling, | |
| ) | |
| from transformers import PreTrainedModel, ViTConfig | |
| from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer | |
| class ViTEmbeddings(nn.Module): | |
| """ | |
| Construct the CLS token, position and patch embeddings. Optionally, also the mask token. | |
| """ | |
| def __init__(self, config: ViTConfig, use_mask_token: bool = False) -> None: | |
| super().__init__() | |
| self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size)) | |
| self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None | |
| self.patch_embeddings = ViTPatchEmbeddings(config) | |
| num_patches = self.patch_embeddings.num_patches | |
| self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size)) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.config = config | |
| def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: | |
| """ | |
| This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher | |
| resolution images. | |
| Source: | |
| https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 | |
| """ | |
| num_patches = embeddings.shape[1] - 1 | |
| num_positions = self.position_embeddings.shape[1] - 1 | |
| if num_patches == num_positions and height == width: | |
| return self.position_embeddings | |
| class_pos_embed = self.position_embeddings[:, 0] | |
| patch_pos_embed = self.position_embeddings[:, 1:] | |
| dim = embeddings.shape[-1] | |
| h0 = height // self.config.patch_size | |
| w0 = width // self.config.patch_size | |
| # we add a small number to avoid floating point error in the interpolation | |
| # see discussion at https://github.com/facebookresearch/dino/issues/8 | |
| h0, w0 = h0 + 0.1, w0 + 0.1 | |
| patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) | |
| patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) | |
| patch_pos_embed = nn.functional.interpolate( | |
| patch_pos_embed, | |
| scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)), | |
| mode="bicubic", | |
| align_corners=False, | |
| ) | |
| assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1] | |
| patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
| return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) | |
| def forward( | |
| self, | |
| pixel_values: torch.Tensor, | |
| bool_masked_pos: Optional[torch.BoolTensor] = None, | |
| interpolate_pos_encoding: bool = False, | |
| ) -> torch.Tensor: | |
| batch_size, num_channels, height, width = pixel_values.shape | |
| embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) | |
| if bool_masked_pos is not None: | |
| seq_length = embeddings.shape[1] | |
| mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) | |
| # replace the masked visual tokens by mask_tokens | |
| mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) | |
| embeddings = embeddings * (1.0 - mask) + mask_tokens * mask | |
| # add the [CLS] token to the embedded patch tokens | |
| cls_tokens = self.cls_token.expand(batch_size, -1, -1) | |
| embeddings = torch.cat((cls_tokens, embeddings), dim=1) | |
| # add positional encoding to each token | |
| if interpolate_pos_encoding: | |
| embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) | |
| else: | |
| embeddings = embeddings + self.position_embeddings | |
| embeddings = self.dropout(embeddings) | |
| return embeddings | |
| class ViTPatchEmbeddings(nn.Module): | |
| """ | |
| This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial | |
| `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a | |
| Transformer. | |
| """ | |
| def __init__(self, config): | |
| super().__init__() | |
| image_size, patch_size = config.image_size, config.patch_size | |
| num_channels, hidden_size = config.num_channels, config.hidden_size | |
| image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) | |
| patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) | |
| num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
| self.image_size = image_size | |
| self.patch_size = patch_size | |
| self.num_channels = num_channels | |
| self.num_patches = num_patches | |
| self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) | |
| def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: | |
| batch_size, num_channels, height, width = pixel_values.shape | |
| if num_channels != self.num_channels: | |
| raise ValueError( | |
| "Make sure that the channel dimension of the pixel values match with the one set in the configuration." | |
| f" Expected {self.num_channels} but got {num_channels}." | |
| ) | |
| if not interpolate_pos_encoding: | |
| if height != self.image_size[0] or width != self.image_size[1]: | |
| raise ValueError( | |
| f"Input image size ({height}*{width}) doesn't match model" | |
| f" ({self.image_size[0]}*{self.image_size[1]})." | |
| ) | |
| embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) | |
| return embeddings | |
| class ViTSelfAttention(nn.Module): | |
| def __init__(self, config: ViTConfig) -> None: | |
| super().__init__() | |
| if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
| raise ValueError( | |
| f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " | |
| f"heads {config.num_attention_heads}." | |
| ) | |
| self.num_attention_heads = config.num_attention_heads | |
| self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
| self.all_head_size = self.num_attention_heads * self.attention_head_size | |
| self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
| self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
| self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
| self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
| def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: | |
| new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
| x = x.view(new_x_shape) | |
| return x.permute(0, 2, 1, 3) | |
| def forward( | |
| self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False | |
| ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
| mixed_query_layer = self.query(hidden_states) | |
| key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
| value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
| query_layer = self.transpose_for_scores(mixed_query_layer) | |
| # Take the dot product between "query" and "key" to get the raw attention scores. | |
| attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
| attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
| # Normalize the attention scores to probabilities. | |
| attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
| # This is actually dropping out entire tokens to attend to, which might | |
| # seem a bit unusual, but is taken from the original Transformer paper. | |
| attention_probs = self.dropout(attention_probs) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| attention_probs = attention_probs * head_mask | |
| context_layer = torch.matmul(attention_probs, value_layer) | |
| context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
| new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
| context_layer = context_layer.view(new_context_layer_shape) | |
| outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
| return outputs | |
| class ViTSelfOutput(nn.Module): | |
| """ | |
| The residual connection is defined in ViTLayer instead of here (as is the case with other models), due to the | |
| layernorm applied before each block. | |
| """ | |
| def __init__(self, config: ViTConfig) -> None: | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| return hidden_states | |
| class ViTAttention(nn.Module): | |
| def __init__(self, config: ViTConfig) -> None: | |
| super().__init__() | |
| self.attention = ViTSelfAttention(config) | |
| self.output = ViTSelfOutput(config) | |
| self.pruned_heads = set() | |
| def prune_heads(self, heads: Set[int]) -> None: | |
| if len(heads) == 0: | |
| return | |
| heads, index = find_pruneable_heads_and_indices( | |
| heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads | |
| ) | |
| # Prune linear layers | |
| self.attention.query = prune_linear_layer(self.attention.query, index) | |
| self.attention.key = prune_linear_layer(self.attention.key, index) | |
| self.attention.value = prune_linear_layer(self.attention.value, index) | |
| self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
| # Update hyper params and store pruned heads | |
| self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) | |
| self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads | |
| self.pruned_heads = self.pruned_heads.union(heads) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| head_mask: Optional[torch.Tensor] = None, | |
| output_attentions: bool = False, | |
| ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
| self_outputs = self.attention(hidden_states, head_mask, output_attentions) | |
| attention_output = self.output(self_outputs[0], hidden_states) | |
| outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
| return outputs | |
| class ViTIntermediate(nn.Module): | |
| def __init__(self, config: ViTConfig) -> None: | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
| if isinstance(config.hidden_act, str): | |
| self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
| else: | |
| self.intermediate_act_fn = config.hidden_act | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.intermediate_act_fn(hidden_states) | |
| return hidden_states | |
| class ViTOutput(nn.Module): | |
| def __init__(self, config: ViTConfig) -> None: | |
| super().__init__() | |
| self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = hidden_states + input_tensor | |
| return hidden_states | |
| def modulate(x, shift, scale): | |
| return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
| class ViTLayer(nn.Module): | |
| """This corresponds to the Block class in the timm implementation.""" | |
| def __init__(self, config: ViTConfig) -> None: | |
| super().__init__() | |
| self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
| self.seq_len_dim = 1 | |
| self.attention = ViTAttention(config) | |
| self.intermediate = ViTIntermediate(config) | |
| self.output = ViTOutput(config) | |
| self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.adaLN_modulation = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear(config.hidden_size, 4 * config.hidden_size, bias=True) | |
| ) | |
| nn.init.constant_(self.adaLN_modulation[-1].weight, 0) | |
| nn.init.constant_(self.adaLN_modulation[-1].bias, 0) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| adaln_input: torch.Tensor = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| output_attentions: bool = False, | |
| ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
| shift_msa, scale_msa, shift_mlp, scale_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1) | |
| self_attention_outputs = self.attention( | |
| modulate(self.layernorm_before(hidden_states), shift_msa, scale_msa), # in ViT, layernorm is applied before self-attention | |
| head_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| attention_output = self_attention_outputs[0] | |
| outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
| # first residual connection | |
| hidden_states = attention_output + hidden_states | |
| # in ViT, layernorm is also applied after self-attention | |
| layer_output = modulate(self.layernorm_after(hidden_states), shift_mlp, scale_mlp) | |
| layer_output = self.intermediate(layer_output) | |
| # second residual connection is done here | |
| layer_output = self.output(layer_output, hidden_states) | |
| outputs = (layer_output,) + outputs | |
| return outputs | |
| class ViTEncoder(nn.Module): | |
| def __init__(self, config: ViTConfig) -> None: | |
| super().__init__() | |
| self.config = config | |
| self.layer = nn.ModuleList([ViTLayer(config) for _ in range(config.num_hidden_layers)]) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| adaln_input: torch.Tensor = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| output_attentions: bool = False, | |
| output_hidden_states: bool = False, | |
| return_dict: bool = True, | |
| ) -> Union[tuple, BaseModelOutput]: | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attentions = () if output_attentions else None | |
| for i, layer_module in enumerate(self.layer): | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| layer_head_mask = head_mask[i] if head_mask is not None else None | |
| if self.gradient_checkpointing and self.training: | |
| layer_outputs = self._gradient_checkpointing_func( | |
| layer_module.__call__, | |
| hidden_states, | |
| adaln_input, | |
| layer_head_mask, | |
| output_attentions, | |
| ) | |
| else: | |
| layer_outputs = layer_module(hidden_states, adaln_input, layer_head_mask, output_attentions) | |
| hidden_states = layer_outputs[0] | |
| if output_attentions: | |
| all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attentions, | |
| ) | |
| class ViTPreTrainedModel(PreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = ViTConfig | |
| base_model_prefix = "vit" | |
| main_input_name = "pixel_values" | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ["ViTEmbeddings", "ViTLayer"] | |
| def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: | |
| """Initialize the weights""" | |
| if isinstance(module, (nn.Linear, nn.Conv2d)): | |
| # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid | |
| # `trunc_normal_cpu` not implemented in `half` issues | |
| module.weight.data = nn.init.trunc_normal_( | |
| module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range | |
| ).to(module.weight.dtype) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| elif isinstance(module, ViTEmbeddings): | |
| module.position_embeddings.data = nn.init.trunc_normal_( | |
| module.position_embeddings.data.to(torch.float32), | |
| mean=0.0, | |
| std=self.config.initializer_range, | |
| ).to(module.position_embeddings.dtype) | |
| module.cls_token.data = nn.init.trunc_normal_( | |
| module.cls_token.data.to(torch.float32), | |
| mean=0.0, | |
| std=self.config.initializer_range, | |
| ).to(module.cls_token.dtype) | |
| class ViTModel(ViTPreTrainedModel): | |
| def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False): | |
| super().__init__(config) | |
| self.config = config | |
| self.embeddings = ViTEmbeddings(config, use_mask_token=use_mask_token) | |
| self.encoder = ViTEncoder(config) | |
| self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.pooler = ViTPooler(config) if add_pooling_layer else None | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self) -> ViTPatchEmbeddings: | |
| return self.embeddings.patch_embeddings | |
| def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: | |
| """ | |
| Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
| class PreTrainedModel | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.encoder.layer[layer].attention.prune_heads(heads) | |
| def forward( | |
| self, | |
| pixel_values: Optional[torch.Tensor] = None, | |
| adaln_input: Optional[torch.Tensor] = None, | |
| bool_masked_pos: Optional[torch.BoolTensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| interpolate_pos_encoding: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| r""" | |
| bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): | |
| Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if pixel_values is None: | |
| raise ValueError("You have to specify pixel_values") | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape bsz x n_heads x N x N | |
| # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
| # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
| head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
| # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?) | |
| expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype | |
| if pixel_values.dtype != expected_dtype: | |
| pixel_values = pixel_values.to(expected_dtype) | |
| embedding_output = self.embeddings( | |
| pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding | |
| ) | |
| encoder_outputs = self.encoder( | |
| embedding_output, | |
| adaln_input=adaln_input, | |
| head_mask=head_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = encoder_outputs[0] | |
| sequence_output = self.layernorm(sequence_output) | |
| pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
| if not return_dict: | |
| head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) | |
| return head_outputs + encoder_outputs[1:] | |
| return BaseModelOutputWithPooling( | |
| last_hidden_state=sequence_output, | |
| pooler_output=pooled_output, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| ) | |
| class ViTPooler(nn.Module): | |
| def __init__(self, config: ViTConfig): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.activation = nn.Tanh() | |
| def forward(self, hidden_states): | |
| # We "pool" the model by simply taking the hidden state corresponding | |
| # to the first token. | |
| first_token_tensor = hidden_states[:, 0] | |
| pooled_output = self.dense(first_token_tensor) | |
| pooled_output = self.activation(pooled_output) | |
| return pooled_output |