gokaygokay's picture
Update app.py
0b32f48 verified
raw
history blame
5.64 kB
import spaces
import os
import tempfile
import time
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
from huggingface_hub import hf_hub_download
from sf3d.system import SF3D
import sf3d.utils as sf3d_utils
from gradio_litmodel3d import LitModel3D
from huggingface_hub import login
import subprocess
dtype = torch.bfloat16
torch.backends.cuda.matmul.allow_tf32 = True
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
device = torch.device('cuda')
import shutil
def find_cuda():
# Check if CUDA_HOME or CUDA_PATH environment variables are set
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
if cuda_home and os.path.exists(cuda_home):
return cuda_home
# Search for the nvcc executable in the system's PATH
nvcc_path = shutil.which('nvcc')
if nvcc_path:
# Remove the 'bin/nvcc' part to get the CUDA installation path
cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
return cuda_path
return None
cuda_path = find_cuda()
if cuda_path:
print(f"CUDA installation found at: {cuda_path}")
else:
print("CUDA installation not found")
login(token=huggingface_token)
# Set up environment and cache
cache_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
if not os.path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
# Initialize Flux pipeline
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token = huggingface_token).to(device)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
# Initialize SF3D model
sf3d_model = SF3D.from_pretrained(
"stabilityai/stable-fast-3d",
config_name="config.yaml",
weight_name="model.safetensors",
).eval().to(device)
# Constants for SF3D
COND_WIDTH, COND_HEIGHT = 512, 512
COND_DISTANCE, COND_FOVY_DEG = 1.6, 40
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
c2w_cond = sf3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = sf3d_utils.create_intrinsic_from_fov_deg(
COND_FOVY_DEG, COND_HEIGHT, COND_WIDTH
)
def generate_image(prompt, height, width, steps, scales, seed):
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
return pipe(
prompt=[prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
def create_batch(input_image: Image.Image) -> dict:
img_cond = torch.from_numpy(
np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32) / 255.0
).float().clip(0, 1)
mask_cond = img_cond[:, :, -1:]
rgb_cond = torch.lerp(
torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond
)
batch_elem = {
"rgb_cond": rgb_cond,
"mask_cond": mask_cond,
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
}
return {k: v.unsqueeze(0) for k, v in batch_elem.items()}
def generate_3d_model(input_image):
with torch.no_grad():
with torch.autocast(device_type="cuda", dtype=torch.float16):
model_batch = create_batch(input_image)
model_batch = {k: v.cuda() for k, v in model_batch.items()}
trimesh_mesh, _ = sf3d_model.generate_mesh(model_batch, 1024)
trimesh_mesh = trimesh_mesh[0]
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".glb")
trimesh_mesh.export(tmp_file.name, file_type="glb", include_normals=True)
return tmp_file.name
@spaces.GPU
def process_and_generate(prompt, height, width, steps, scales, seed):
# Generate image from prompt
generated_image = generate_image(prompt, height, width, steps, scales, seed)
# Generate 3D model from the image
glb_file = generate_3d_model(generated_image)
return generated_image, glb_file
# Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Text-to-3D Model Generator")
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Your Image Description", lines=3)
with gr.Accordion("Advanced Settings", open=False):
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
seed = gr.Number(label="Seed", value=3413, precision=0)
generate_btn = gr.Button("Generate 3D Model", variant="primary")
with gr.Column(scale=4):
output_image = gr.Image(label="Generated Image")
output_3d = LitModel3D(label="3D Model", clear_color=[0.0, 0.0, 0.0, 0.0])
generate_btn.click(
process_and_generate,
inputs=[prompt, height, width, steps, scales, seed],
outputs=[output_image, output_3d]
)
if __name__ == "__main__":
demo.launch()