Spaces:
Running
on
Zero
Running
on
Zero
# Original from: https://github.com/ace-step/ACE-Step/blob/main/music_dcae/music_dcae_pipeline.py | |
import torch | |
from .autoencoder_dc import AutoencoderDC | |
import logging | |
try: | |
import torchaudio | |
except: | |
logging.warning("torchaudio missing, ACE model will be broken") | |
import torchvision.transforms as transforms | |
from .music_vocoder import ADaMoSHiFiGANV1 | |
class MusicDCAE(torch.nn.Module): | |
def __init__(self, source_sample_rate=None, dcae_config={}, vocoder_config={}): | |
super(MusicDCAE, self).__init__() | |
self.dcae = AutoencoderDC(**dcae_config) | |
self.vocoder = ADaMoSHiFiGANV1(**vocoder_config) | |
if source_sample_rate is None: | |
self.source_sample_rate = 48000 | |
else: | |
self.source_sample_rate = source_sample_rate | |
# self.resampler = torchaudio.transforms.Resample(source_sample_rate, 44100) | |
self.transform = transforms.Compose([ | |
transforms.Normalize(0.5, 0.5), | |
]) | |
self.min_mel_value = -11.0 | |
self.max_mel_value = 3.0 | |
self.audio_chunk_size = int(round((1024 * 512 / 44100 * 48000))) | |
self.mel_chunk_size = 1024 | |
self.time_dimention_multiple = 8 | |
self.latent_chunk_size = self.mel_chunk_size // self.time_dimention_multiple | |
self.scale_factor = 0.1786 | |
self.shift_factor = -1.9091 | |
def load_audio(self, audio_path): | |
audio, sr = torchaudio.load(audio_path) | |
return audio, sr | |
def forward_mel(self, audios): | |
mels = [] | |
for i in range(len(audios)): | |
image = self.vocoder.mel_transform(audios[i]) | |
mels.append(image) | |
mels = torch.stack(mels) | |
return mels | |
def encode(self, audios, audio_lengths=None, sr=None): | |
if audio_lengths is None: | |
audio_lengths = torch.tensor([audios.shape[2]] * audios.shape[0]) | |
audio_lengths = audio_lengths.to(audios.device) | |
if sr is None: | |
sr = self.source_sample_rate | |
if sr != 44100: | |
audios = torchaudio.functional.resample(audios, sr, 44100) | |
max_audio_len = audios.shape[-1] | |
if max_audio_len % (8 * 512) != 0: | |
audios = torch.nn.functional.pad(audios, (0, 8 * 512 - max_audio_len % (8 * 512))) | |
mels = self.forward_mel(audios) | |
mels = (mels - self.min_mel_value) / (self.max_mel_value - self.min_mel_value) | |
mels = self.transform(mels) | |
latents = [] | |
for mel in mels: | |
latent = self.dcae.encoder(mel.unsqueeze(0)) | |
latents.append(latent) | |
latents = torch.cat(latents, dim=0) | |
# latent_lengths = (audio_lengths / sr * 44100 / 512 / self.time_dimention_multiple).long() | |
latents = (latents - self.shift_factor) * self.scale_factor | |
return latents | |
# return latents, latent_lengths | |
def decode(self, latents, audio_lengths=None, sr=None): | |
latents = latents / self.scale_factor + self.shift_factor | |
pred_wavs = [] | |
for latent in latents: | |
mels = self.dcae.decoder(latent.unsqueeze(0)) | |
mels = mels * 0.5 + 0.5 | |
mels = mels * (self.max_mel_value - self.min_mel_value) + self.min_mel_value | |
wav = self.vocoder.decode(mels[0]).squeeze(1) | |
if sr is not None: | |
# resampler = torchaudio.transforms.Resample(44100, sr).to(latents.device).to(latents.dtype) | |
wav = torchaudio.functional.resample(wav, 44100, sr) | |
# wav = resampler(wav) | |
else: | |
sr = 44100 | |
pred_wavs.append(wav) | |
if audio_lengths is not None: | |
pred_wavs = [wav[:, :length].cpu() for wav, length in zip(pred_wavs, audio_lengths)] | |
return torch.stack(pred_wavs) | |
# return sr, pred_wavs | |
def forward(self, audios, audio_lengths=None, sr=None): | |
latents, latent_lengths = self.encode(audios=audios, audio_lengths=audio_lengths, sr=sr) | |
sr, pred_wavs = self.decode(latents=latents, audio_lengths=audio_lengths, sr=sr) | |
return sr, pred_wavs, latents, latent_lengths | |