Spaces:
Running
on
Zero
Running
on
Zero
# Rewritten from diffusers | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from typing import Tuple, Union | |
import comfy.model_management | |
import comfy.ops | |
ops = comfy.ops.disable_weight_init | |
class RMSNorm(ops.RMSNorm): | |
def __init__(self, dim, eps=1e-5, elementwise_affine=True, bias=False): | |
super().__init__(dim, eps=eps, elementwise_affine=elementwise_affine) | |
if elementwise_affine: | |
self.bias = nn.Parameter(torch.empty(dim)) if bias else None | |
def forward(self, x): | |
x = super().forward(x) | |
if self.elementwise_affine: | |
if self.bias is not None: | |
x = x + comfy.model_management.cast_to(self.bias, dtype=x.dtype, device=x.device) | |
return x | |
def get_normalization(norm_type, num_features, num_groups=32, eps=1e-5): | |
if norm_type == "batch_norm": | |
return nn.BatchNorm2d(num_features) | |
elif norm_type == "group_norm": | |
return ops.GroupNorm(num_groups, num_features) | |
elif norm_type == "layer_norm": | |
return ops.LayerNorm(num_features) | |
elif norm_type == "rms_norm": | |
return RMSNorm(num_features, eps=eps, elementwise_affine=True, bias=True) | |
else: | |
raise ValueError(f"Unknown normalization type: {norm_type}") | |
def get_activation(activation_type): | |
if activation_type == "relu": | |
return nn.ReLU() | |
elif activation_type == "relu6": | |
return nn.ReLU6() | |
elif activation_type == "silu": | |
return nn.SiLU() | |
elif activation_type == "leaky_relu": | |
return nn.LeakyReLU(0.2) | |
else: | |
raise ValueError(f"Unknown activation type: {activation_type}") | |
class ResBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
norm_type: str = "batch_norm", | |
act_fn: str = "relu6", | |
) -> None: | |
super().__init__() | |
self.norm_type = norm_type | |
self.nonlinearity = get_activation(act_fn) if act_fn is not None else nn.Identity() | |
self.conv1 = ops.Conv2d(in_channels, in_channels, 3, 1, 1) | |
self.conv2 = ops.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False) | |
self.norm = get_normalization(norm_type, out_channels) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
residual = hidden_states | |
hidden_states = self.conv1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.norm_type == "rms_norm": | |
# move channel to the last dimension so we apply RMSnorm across channel dimension | |
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1) | |
else: | |
hidden_states = self.norm(hidden_states) | |
return hidden_states + residual | |
class SanaMultiscaleAttentionProjection(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
num_attention_heads: int, | |
kernel_size: int, | |
) -> None: | |
super().__init__() | |
channels = 3 * in_channels | |
self.proj_in = ops.Conv2d( | |
channels, | |
channels, | |
kernel_size, | |
padding=kernel_size // 2, | |
groups=channels, | |
bias=False, | |
) | |
self.proj_out = ops.Conv2d(channels, channels, 1, 1, 0, groups=3 * num_attention_heads, bias=False) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.proj_in(hidden_states) | |
hidden_states = self.proj_out(hidden_states) | |
return hidden_states | |
class SanaMultiscaleLinearAttention(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
num_attention_heads: int = None, | |
attention_head_dim: int = 8, | |
mult: float = 1.0, | |
norm_type: str = "batch_norm", | |
kernel_sizes: tuple = (5,), | |
eps: float = 1e-15, | |
residual_connection: bool = False, | |
): | |
super().__init__() | |
self.eps = eps | |
self.attention_head_dim = attention_head_dim | |
self.norm_type = norm_type | |
self.residual_connection = residual_connection | |
num_attention_heads = ( | |
int(in_channels // attention_head_dim * mult) | |
if num_attention_heads is None | |
else num_attention_heads | |
) | |
inner_dim = num_attention_heads * attention_head_dim | |
self.to_q = ops.Linear(in_channels, inner_dim, bias=False) | |
self.to_k = ops.Linear(in_channels, inner_dim, bias=False) | |
self.to_v = ops.Linear(in_channels, inner_dim, bias=False) | |
self.to_qkv_multiscale = nn.ModuleList() | |
for kernel_size in kernel_sizes: | |
self.to_qkv_multiscale.append( | |
SanaMultiscaleAttentionProjection(inner_dim, num_attention_heads, kernel_size) | |
) | |
self.nonlinearity = nn.ReLU() | |
self.to_out = ops.Linear(inner_dim * (1 + len(kernel_sizes)), out_channels, bias=False) | |
self.norm_out = get_normalization(norm_type, out_channels) | |
def apply_linear_attention(self, query, key, value): | |
value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1) | |
scores = torch.matmul(value, key.transpose(-1, -2)) | |
hidden_states = torch.matmul(scores, query) | |
hidden_states = hidden_states.to(dtype=torch.float32) | |
hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps) | |
return hidden_states | |
def apply_quadratic_attention(self, query, key, value): | |
scores = torch.matmul(key.transpose(-1, -2), query) | |
scores = scores.to(dtype=torch.float32) | |
scores = scores / (torch.sum(scores, dim=2, keepdim=True) + self.eps) | |
hidden_states = torch.matmul(value, scores.to(value.dtype)) | |
return hidden_states | |
def forward(self, hidden_states): | |
height, width = hidden_states.shape[-2:] | |
if height * width > self.attention_head_dim: | |
use_linear_attention = True | |
else: | |
use_linear_attention = False | |
residual = hidden_states | |
batch_size, _, height, width = list(hidden_states.size()) | |
original_dtype = hidden_states.dtype | |
hidden_states = hidden_states.movedim(1, -1) | |
query = self.to_q(hidden_states) | |
key = self.to_k(hidden_states) | |
value = self.to_v(hidden_states) | |
hidden_states = torch.cat([query, key, value], dim=3) | |
hidden_states = hidden_states.movedim(-1, 1) | |
multi_scale_qkv = [hidden_states] | |
for block in self.to_qkv_multiscale: | |
multi_scale_qkv.append(block(hidden_states)) | |
hidden_states = torch.cat(multi_scale_qkv, dim=1) | |
if use_linear_attention: | |
# for linear attention upcast hidden_states to float32 | |
hidden_states = hidden_states.to(dtype=torch.float32) | |
hidden_states = hidden_states.reshape(batch_size, -1, 3 * self.attention_head_dim, height * width) | |
query, key, value = hidden_states.chunk(3, dim=2) | |
query = self.nonlinearity(query) | |
key = self.nonlinearity(key) | |
if use_linear_attention: | |
hidden_states = self.apply_linear_attention(query, key, value) | |
hidden_states = hidden_states.to(dtype=original_dtype) | |
else: | |
hidden_states = self.apply_quadratic_attention(query, key, value) | |
hidden_states = torch.reshape(hidden_states, (batch_size, -1, height, width)) | |
hidden_states = self.to_out(hidden_states.movedim(1, -1)).movedim(-1, 1) | |
if self.norm_type == "rms_norm": | |
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1) | |
else: | |
hidden_states = self.norm_out(hidden_states) | |
if self.residual_connection: | |
hidden_states = hidden_states + residual | |
return hidden_states | |
class EfficientViTBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
mult: float = 1.0, | |
attention_head_dim: int = 32, | |
qkv_multiscales: tuple = (5,), | |
norm_type: str = "batch_norm", | |
) -> None: | |
super().__init__() | |
self.attn = SanaMultiscaleLinearAttention( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
mult=mult, | |
attention_head_dim=attention_head_dim, | |
norm_type=norm_type, | |
kernel_sizes=qkv_multiscales, | |
residual_connection=True, | |
) | |
self.conv_out = GLUMBConv( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
norm_type="rms_norm", | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.attn(x) | |
x = self.conv_out(x) | |
return x | |
class GLUMBConv(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
expand_ratio: float = 4, | |
norm_type: str = None, | |
residual_connection: bool = True, | |
) -> None: | |
super().__init__() | |
hidden_channels = int(expand_ratio * in_channels) | |
self.norm_type = norm_type | |
self.residual_connection = residual_connection | |
self.nonlinearity = nn.SiLU() | |
self.conv_inverted = ops.Conv2d(in_channels, hidden_channels * 2, 1, 1, 0) | |
self.conv_depth = ops.Conv2d(hidden_channels * 2, hidden_channels * 2, 3, 1, 1, groups=hidden_channels * 2) | |
self.conv_point = ops.Conv2d(hidden_channels, out_channels, 1, 1, 0, bias=False) | |
self.norm = None | |
if norm_type == "rms_norm": | |
self.norm = RMSNorm(out_channels, eps=1e-5, elementwise_affine=True, bias=True) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
if self.residual_connection: | |
residual = hidden_states | |
hidden_states = self.conv_inverted(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.conv_depth(hidden_states) | |
hidden_states, gate = torch.chunk(hidden_states, 2, dim=1) | |
hidden_states = hidden_states * self.nonlinearity(gate) | |
hidden_states = self.conv_point(hidden_states) | |
if self.norm_type == "rms_norm": | |
# move channel to the last dimension so we apply RMSnorm across channel dimension | |
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1) | |
if self.residual_connection: | |
hidden_states = hidden_states + residual | |
return hidden_states | |
def get_block( | |
block_type: str, | |
in_channels: int, | |
out_channels: int, | |
attention_head_dim: int, | |
norm_type: str, | |
act_fn: str, | |
qkv_mutliscales: tuple = (), | |
): | |
if block_type == "ResBlock": | |
block = ResBlock(in_channels, out_channels, norm_type, act_fn) | |
elif block_type == "EfficientViTBlock": | |
block = EfficientViTBlock( | |
in_channels, | |
attention_head_dim=attention_head_dim, | |
norm_type=norm_type, | |
qkv_multiscales=qkv_mutliscales | |
) | |
else: | |
raise ValueError(f"Block with {block_type=} is not supported.") | |
return block | |
class DCDownBlock2d(nn.Module): | |
def __init__(self, in_channels: int, out_channels: int, downsample: bool = False, shortcut: bool = True) -> None: | |
super().__init__() | |
self.downsample = downsample | |
self.factor = 2 | |
self.stride = 1 if downsample else 2 | |
self.group_size = in_channels * self.factor**2 // out_channels | |
self.shortcut = shortcut | |
out_ratio = self.factor**2 | |
if downsample: | |
assert out_channels % out_ratio == 0 | |
out_channels = out_channels // out_ratio | |
self.conv = ops.Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=self.stride, | |
padding=1, | |
) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
x = self.conv(hidden_states) | |
if self.downsample: | |
x = F.pixel_unshuffle(x, self.factor) | |
if self.shortcut: | |
y = F.pixel_unshuffle(hidden_states, self.factor) | |
y = y.unflatten(1, (-1, self.group_size)) | |
y = y.mean(dim=2) | |
hidden_states = x + y | |
else: | |
hidden_states = x | |
return hidden_states | |
class DCUpBlock2d(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
interpolate: bool = False, | |
shortcut: bool = True, | |
interpolation_mode: str = "nearest", | |
) -> None: | |
super().__init__() | |
self.interpolate = interpolate | |
self.interpolation_mode = interpolation_mode | |
self.shortcut = shortcut | |
self.factor = 2 | |
self.repeats = out_channels * self.factor**2 // in_channels | |
out_ratio = self.factor**2 | |
if not interpolate: | |
out_channels = out_channels * out_ratio | |
self.conv = ops.Conv2d(in_channels, out_channels, 3, 1, 1) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
if self.interpolate: | |
x = F.interpolate(hidden_states, scale_factor=self.factor, mode=self.interpolation_mode) | |
x = self.conv(x) | |
else: | |
x = self.conv(hidden_states) | |
x = F.pixel_shuffle(x, self.factor) | |
if self.shortcut: | |
y = hidden_states.repeat_interleave(self.repeats, dim=1, output_size=hidden_states.shape[1] * self.repeats) | |
y = F.pixel_shuffle(y, self.factor) | |
hidden_states = x + y | |
else: | |
hidden_states = x | |
return hidden_states | |
class Encoder(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
latent_channels: int, | |
attention_head_dim: int = 32, | |
block_type: str or tuple = "ResBlock", | |
block_out_channels: tuple = (128, 256, 512, 512, 1024, 1024), | |
layers_per_block: tuple = (2, 2, 2, 2, 2, 2), | |
qkv_multiscales: tuple = ((), (), (), (5,), (5,), (5,)), | |
downsample_block_type: str = "pixel_unshuffle", | |
out_shortcut: bool = True, | |
): | |
super().__init__() | |
num_blocks = len(block_out_channels) | |
if isinstance(block_type, str): | |
block_type = (block_type,) * num_blocks | |
if layers_per_block[0] > 0: | |
self.conv_in = ops.Conv2d( | |
in_channels, | |
block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
else: | |
self.conv_in = DCDownBlock2d( | |
in_channels=in_channels, | |
out_channels=block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1], | |
downsample=downsample_block_type == "pixel_unshuffle", | |
shortcut=False, | |
) | |
down_blocks = [] | |
for i, (out_channel, num_layers) in enumerate(zip(block_out_channels, layers_per_block)): | |
down_block_list = [] | |
for _ in range(num_layers): | |
block = get_block( | |
block_type[i], | |
out_channel, | |
out_channel, | |
attention_head_dim=attention_head_dim, | |
norm_type="rms_norm", | |
act_fn="silu", | |
qkv_mutliscales=qkv_multiscales[i], | |
) | |
down_block_list.append(block) | |
if i < num_blocks - 1 and num_layers > 0: | |
downsample_block = DCDownBlock2d( | |
in_channels=out_channel, | |
out_channels=block_out_channels[i + 1], | |
downsample=downsample_block_type == "pixel_unshuffle", | |
shortcut=True, | |
) | |
down_block_list.append(downsample_block) | |
down_blocks.append(nn.Sequential(*down_block_list)) | |
self.down_blocks = nn.ModuleList(down_blocks) | |
self.conv_out = ops.Conv2d(block_out_channels[-1], latent_channels, 3, 1, 1) | |
self.out_shortcut = out_shortcut | |
if out_shortcut: | |
self.out_shortcut_average_group_size = block_out_channels[-1] // latent_channels | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.conv_in(hidden_states) | |
for down_block in self.down_blocks: | |
hidden_states = down_block(hidden_states) | |
if self.out_shortcut: | |
x = hidden_states.unflatten(1, (-1, self.out_shortcut_average_group_size)) | |
x = x.mean(dim=2) | |
hidden_states = self.conv_out(hidden_states) + x | |
else: | |
hidden_states = self.conv_out(hidden_states) | |
return hidden_states | |
class Decoder(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
latent_channels: int, | |
attention_head_dim: int = 32, | |
block_type: str or tuple = "ResBlock", | |
block_out_channels: tuple = (128, 256, 512, 512, 1024, 1024), | |
layers_per_block: tuple = (2, 2, 2, 2, 2, 2), | |
qkv_multiscales: tuple = ((), (), (), (5,), (5,), (5,)), | |
norm_type: str or tuple = "rms_norm", | |
act_fn: str or tuple = "silu", | |
upsample_block_type: str = "pixel_shuffle", | |
in_shortcut: bool = True, | |
): | |
super().__init__() | |
num_blocks = len(block_out_channels) | |
if isinstance(block_type, str): | |
block_type = (block_type,) * num_blocks | |
if isinstance(norm_type, str): | |
norm_type = (norm_type,) * num_blocks | |
if isinstance(act_fn, str): | |
act_fn = (act_fn,) * num_blocks | |
self.conv_in = ops.Conv2d(latent_channels, block_out_channels[-1], 3, 1, 1) | |
self.in_shortcut = in_shortcut | |
if in_shortcut: | |
self.in_shortcut_repeats = block_out_channels[-1] // latent_channels | |
up_blocks = [] | |
for i, (out_channel, num_layers) in reversed(list(enumerate(zip(block_out_channels, layers_per_block)))): | |
up_block_list = [] | |
if i < num_blocks - 1 and num_layers > 0: | |
upsample_block = DCUpBlock2d( | |
block_out_channels[i + 1], | |
out_channel, | |
interpolate=upsample_block_type == "interpolate", | |
shortcut=True, | |
) | |
up_block_list.append(upsample_block) | |
for _ in range(num_layers): | |
block = get_block( | |
block_type[i], | |
out_channel, | |
out_channel, | |
attention_head_dim=attention_head_dim, | |
norm_type=norm_type[i], | |
act_fn=act_fn[i], | |
qkv_mutliscales=qkv_multiscales[i], | |
) | |
up_block_list.append(block) | |
up_blocks.insert(0, nn.Sequential(*up_block_list)) | |
self.up_blocks = nn.ModuleList(up_blocks) | |
channels = block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1] | |
self.norm_out = RMSNorm(channels, 1e-5, elementwise_affine=True, bias=True) | |
self.conv_act = nn.ReLU() | |
self.conv_out = None | |
if layers_per_block[0] > 0: | |
self.conv_out = ops.Conv2d(channels, in_channels, 3, 1, 1) | |
else: | |
self.conv_out = DCUpBlock2d( | |
channels, in_channels, interpolate=upsample_block_type == "interpolate", shortcut=False | |
) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
if self.in_shortcut: | |
x = hidden_states.repeat_interleave( | |
self.in_shortcut_repeats, dim=1, output_size=hidden_states.shape[1] * self.in_shortcut_repeats | |
) | |
hidden_states = self.conv_in(hidden_states) + x | |
else: | |
hidden_states = self.conv_in(hidden_states) | |
for up_block in reversed(self.up_blocks): | |
hidden_states = up_block(hidden_states) | |
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1) | |
hidden_states = self.conv_act(hidden_states) | |
hidden_states = self.conv_out(hidden_states) | |
return hidden_states | |
class AutoencoderDC(nn.Module): | |
def __init__( | |
self, | |
in_channels: int = 2, | |
latent_channels: int = 8, | |
attention_head_dim: int = 32, | |
encoder_block_types: Union[str, Tuple[str]] = ["ResBlock", "ResBlock", "ResBlock", "EfficientViTBlock"], | |
decoder_block_types: Union[str, Tuple[str]] = ["ResBlock", "ResBlock", "ResBlock", "EfficientViTBlock"], | |
encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 1024), | |
decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 1024), | |
encoder_layers_per_block: Tuple[int] = (2, 2, 3, 3), | |
decoder_layers_per_block: Tuple[int] = (3, 3, 3, 3), | |
encoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (5,), (5,)), | |
decoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (5,), (5,)), | |
upsample_block_type: str = "interpolate", | |
downsample_block_type: str = "Conv", | |
decoder_norm_types: Union[str, Tuple[str]] = "rms_norm", | |
decoder_act_fns: Union[str, Tuple[str]] = "silu", | |
scaling_factor: float = 0.41407, | |
) -> None: | |
super().__init__() | |
self.encoder = Encoder( | |
in_channels=in_channels, | |
latent_channels=latent_channels, | |
attention_head_dim=attention_head_dim, | |
block_type=encoder_block_types, | |
block_out_channels=encoder_block_out_channels, | |
layers_per_block=encoder_layers_per_block, | |
qkv_multiscales=encoder_qkv_multiscales, | |
downsample_block_type=downsample_block_type, | |
) | |
self.decoder = Decoder( | |
in_channels=in_channels, | |
latent_channels=latent_channels, | |
attention_head_dim=attention_head_dim, | |
block_type=decoder_block_types, | |
block_out_channels=decoder_block_out_channels, | |
layers_per_block=decoder_layers_per_block, | |
qkv_multiscales=decoder_qkv_multiscales, | |
norm_type=decoder_norm_types, | |
act_fn=decoder_act_fns, | |
upsample_block_type=upsample_block_type, | |
) | |
self.scaling_factor = scaling_factor | |
self.spatial_compression_ratio = 2 ** (len(encoder_block_out_channels) - 1) | |
def encode(self, x: torch.Tensor) -> torch.Tensor: | |
"""Internal encoding function.""" | |
encoded = self.encoder(x) | |
return encoded * self.scaling_factor | |
def decode(self, z: torch.Tensor) -> torch.Tensor: | |
# Scale the latents back | |
z = z / self.scaling_factor | |
decoded = self.decoder(z) | |
return decoded | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
z = self.encode(x) | |
return self.decode(z) | |