from flax.jax_utils import replicate from jax import pmap from flax.training.common_utils import shard import jax import jax.numpy as jnp from pathlib import Path from PIL import Image import numpy as np from diffusers import FlaxStableDiffusionPipeline import os if 'TPU_NAME' in os.environ: import requests if 'TPU_DRIVER_MODE' not in globals(): url = 'http:' + os.environ['TPU_NAME'].split(':')[1] + ':8475/requestversion/tpu_driver_nightly' resp = requests.post(url) TPU_DRIVER_MODE = 1 from jax.config import config config.FLAGS.jax_xla_backend = "tpu_driver" config.FLAGS.jax_backend_target = os.environ['TPU_NAME'] print('Registered TPU:', config.FLAGS.jax_backend_target) else: print('No TPU detected. Can be changed under "Runtime/Change runtime type".') import jax jax.local_devices() num_devices = jax.device_count() device_type = jax.devices()[0].device_kind print(f"Found {num_devices} JAX devices of type {device_type}.") def sd2_inference(pipeline, prompts, params, seed = 42, num_inference_steps = 50 ): prng_seed = jax.random.PRNGKey(seed) prompt_ids = pipeline.prepare_inputs(prompts) params = replicate(params) prng_seed = jax.random.split(prng_seed, jax.device_count()) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images images = images.reshape((images.shape[0] * images.shape[1], ) + images.shape[-3:]) images = pipeline.numpy_to_pil(images) return images def image_grid(imgs, rows, cols, down_sample = 1 ): w,h = imgs[0].size grid = Image.new('RGB', size=(cols*w, rows*h)) for i, img in enumerate(imgs): grid.paste(img, box=(i%cols*w, i//cols*h)) grid = grid.resize( (grid.size[0]//down_sample, grid.size[1]//down_sample) ) return grid HF_ACCESS_TOKEN = os.environ["HFAUTH"] # Load Model # - Reference: https://github.com/huggingface/diffusers/blob/main/README.md pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", use_auth_token = HF_ACCESS_TOKEN, revision="bf16", dtype=jnp.bfloat16, )