Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,9 @@ import jax
|
|
5 |
import jax.numpy as jnp
|
6 |
import gradio as gr
|
7 |
|
|
|
|
|
|
|
8 |
from pathlib import Path
|
9 |
from PIL import Image
|
10 |
import numpy as np
|
@@ -61,12 +64,41 @@ pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
|
|
61 |
|
62 |
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
def text_to_image_and_image_to_text(text=None,image=None):
|
66 |
txt=None
|
67 |
img=None
|
68 |
if image != None:
|
69 |
-
txt=
|
70 |
if text !=None:
|
71 |
images = sd2_inference(pipeline, [text], params, seed = 42, num_inference_steps = 5 )
|
72 |
img = images[0]
|
|
|
5 |
import jax.numpy as jnp
|
6 |
import gradio as gr
|
7 |
|
8 |
+
from PIL import Image
|
9 |
+
from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel
|
10 |
+
|
11 |
from pathlib import Path
|
12 |
from PIL import Image
|
13 |
import numpy as np
|
|
|
64 |
|
65 |
|
66 |
|
67 |
+
loc = "ydshieh/vit-gpt2-coco-en"
|
68 |
+
|
69 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
|
70 |
+
tokenizer = AutoTokenizer.from_pretrained(loc)
|
71 |
+
model = FlaxVisionEncoderDecoderModel.from_pretrained(loc)
|
72 |
+
|
73 |
+
gen_kwargs = {"max_length": 16, "num_beams": 4}
|
74 |
+
|
75 |
+
|
76 |
+
# This takes sometime when compiling the first time, but the subsequent inference will be much faster
|
77 |
+
|
78 |
+
def generate(pixel_values):
|
79 |
+
output_ids = model.generate(pixel_values, **gen_kwargs).sequences
|
80 |
+
return output_ids
|
81 |
+
|
82 |
+
|
83 |
+
def predict(image):
|
84 |
+
|
85 |
+
pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values
|
86 |
+
output_ids = generate(pixel_values)
|
87 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
88 |
+
preds = [pred.strip() for pred in preds]
|
89 |
+
|
90 |
+
return preds
|
91 |
+
|
92 |
+
def image2text(image):
|
93 |
+
preds = predict(images[0])
|
94 |
+
return (preds[0])
|
95 |
+
|
96 |
|
97 |
def text_to_image_and_image_to_text(text=None,image=None):
|
98 |
txt=None
|
99 |
img=None
|
100 |
if image != None:
|
101 |
+
txt=image2text(image)
|
102 |
if text !=None:
|
103 |
images = sd2_inference(pipeline, [text], params, seed = 42, num_inference_steps = 5 )
|
104 |
img = images[0]
|