Spaces:
Sleeping
Sleeping
from flax.jax_utils import replicate | |
from jax import pmap | |
from flax.training.common_utils import shard | |
import jax | |
import jax.numpy as jnp | |
import gradio as gr | |
from pathlib import Path | |
from PIL import Image | |
import numpy as np | |
from diffusers import FlaxStableDiffusionPipeline | |
import os | |
if 'TPU_NAME' in os.environ: | |
import requests | |
if 'TPU_DRIVER_MODE' not in globals(): | |
url = 'http:' + os.environ['TPU_NAME'].split(':')[1] + ':8475/requestversion/tpu_driver_nightly' | |
resp = requests.post(url) | |
TPU_DRIVER_MODE = 1 | |
from jax.config import config | |
config.FLAGS.jax_xla_backend = "tpu_driver" | |
config.FLAGS.jax_backend_target = os.environ['TPU_NAME'] | |
print('Registered TPU:', config.FLAGS.jax_backend_target) | |
else: | |
print('No TPU detected. Can be changed under "Runtime/Change runtime type".') | |
import jax | |
jax.local_devices() | |
num_devices = jax.device_count() | |
device_type = jax.devices()[0].device_kind | |
print(f"Found {num_devices} JAX devices of type {device_type}.") | |
def sd2_inference(pipeline, prompts, params, seed = 42, num_inference_steps = 50 ): | |
prng_seed = jax.random.PRNGKey(seed) | |
prompt_ids = pipeline.prepare_inputs(prompts) | |
params = replicate(params) | |
prng_seed = jax.random.split(prng_seed, jax.device_count()) | |
prompt_ids = shard(prompt_ids) | |
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images | |
images = images.reshape((images.shape[0] * images.shape[1], ) + images.shape[-3:]) | |
images = pipeline.numpy_to_pil(images) | |
return images | |
HF_ACCESS_TOKEN = os.environ["HFAUTH"] | |
# Load Model | |
# - Reference: https://github.com/huggingface/diffusers/blob/main/README.md | |
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", | |
use_auth_token = HF_ACCESS_TOKEN, | |
revision="bf16", | |
dtype=jnp.bfloat16, | |
) | |
prompts = ["apple"] * 1 | |
def generate_image(dense_class_vector=None, int_index=None, noise_seed_vector=None, truncation=0.4): | |
seed = int(noise_seed_vector.sum().item()) if noise_seed_vector is not None else None | |
noise_vector = truncated_noise_sample(truncation=truncation, batch_size=1, seed=seed) | |
noise_vector = torch.from_numpy(noise_vector) | |
if int_index is not None: | |
class_vector = one_hot_from_int([int_index], batch_size=1) | |
class_vector = torch.from_numpy(class_vector) | |
dense_class_vector = gan_model.embeddings(class_vector) | |
else: | |
if isinstance(dense_class_vector, np.ndarray): | |
dense_class_vector = torch.tensor(dense_class_vector) | |
dense_class_vector = dense_class_vector.view(1, 128) | |
input_vector = torch.cat([noise_vector, dense_class_vector], dim=1) | |
# Generate an image | |
with torch.no_grad(): | |
output = gan_model.generator(input_vector, truncation) | |
output = output.cpu().numpy() | |
output = output.transpose((0, 2, 3, 1)) | |
output = ((output + 1.0) / 2.0) * 256 | |
output.clip(0, 255, out=output) | |
output = np.asarray(np.uint8(output[0]), dtype=np.uint8) | |
return output | |
def text_to_image(text): | |
images = sd2_inference(pipeline, [text], params, seed = 42, num_inference_steps = 5 ) | |
img = images[0] | |
return img | |
examples = ["apple", | |
"banana", | |
"chocolate"] | |
if __name__ == '__main__': | |
interFace = gr.Interface(fn=text_to_image, | |
inputs=gr.inputs.Textbox(placeholder="Enter the text to Encode to an image", label="Text " | |
"query", | |
lines=1), | |
outputs=gr.outputs.Image(type="auto", label="Generated Image"), | |
verbose=True, | |
examples=examples, | |
title="Generate Image from Text", | |
description="", | |
theme="huggingface") | |
interFace.launch() |