Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| # Initialize the model and tokenizer | |
| cuda = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| model = AutoModelForCausalLM.from_pretrained("goendalf666/salesGPT_v2", trust_remote_code=True).to(cuda) | |
| tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5") | |
| def interact_with_model(user_input): | |
| # Construct conversation text for the model | |
| conversation_text = ( | |
| "You are in the role of a Salesman. " | |
| "Here is a conversation: " | |
| f"Customer: {user_input} Salesman: " | |
| ) | |
| # Tokenize inputs | |
| inputs = tokenizer(conversation_text, return_tensors="pt").to(cuda) | |
| # Generate response | |
| outputs = model.generate(**inputs, max_length=512) | |
| response_text = tokenizer.batch_decode(outputs)[0] | |
| # Extract only the newly generated text | |
| new_text_start = len(conversation_text) | |
| new_generated_text = response_text[new_text_start:].strip() | |
| # Find where the next "Customer:" is, and truncate the text there | |
| end_index = new_generated_text.find("Customer:") | |
| if end_index != -1: | |
| new_generated_text = new_generated_text[:end_index].strip() | |
| # Ignore if the model puts "Salesman: " itself at the beginning | |
| if new_generated_text.startswith("Salesman:"): | |
| new_generated_text = new_generated_text[len("Salesman:"):].strip() | |
| # Return the model's response | |
| return new_generated_text | |
| # Create Gradio Interface and launch it | |
| iface = gr.Interface(fn=interact_with_model, inputs="text", outputs="text") | |
| iface.launch() |