import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch from src.euler_scheduler import MyEulerAncestralDiscreteScheduler from diffusers.pipelines.auto_pipeline import AutoPipelineForImage2Image from src.sdxl_inversion_pipeline import SDXLDDIMPipeline from src.config import RunConfig device = "cuda" if torch.cuda.is_available() else "cpu" scheduler_class = MyEulerAncestralDiscreteScheduler pipe_inversion = SDXLDDIMPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device) pipe_inference = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device) pipe_inference.scheduler = scheduler_class.from_config(pipe_inference.scheduler.config) pipe_inversion.scheduler = scheduler_class.from_config(pipe_inversion.scheduler.config) pipe_inversion.scheduler_inference = scheduler_class.from_config(pipe_inference.scheduler.config) # if torch.cuda.is_available(): # torch.cuda.max_memory_allocated(device=device) # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) # pipe.enable_xformers_memory_efficient_attention() # pipe = pipe.to(device) # else: # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) # pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def infer(input_image, description_prompt, target_prompt, guidance_scale, num_inference_steps=4, num_inversion_steps=4, inversion_max_step=0.6): config = RunConfig(num_inference_steps=num_inference_steps, num_inversion_steps=num_inversion_steps, guidance_scale=guidance_scale, inversion_max_step=inversion_max_step) editor = ImageEditorDemo(pipe_inversion, pipe_inference, input_image, description_prompt, config) editor.edit(target_prompt) return image examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(css=css) as demo: gr.Markdown(f""" # RNRI briel and links on device: {power_device}. """) with gr.Column(elem_id="col-container"): with gr.Row(): input_image = gr.Image(label="Input image", sources=['upload', 'webcam', 'clipboard'], type="pil") with gr.Row(): description_prompt = gr.Text( label="Image description", show_label=False, max_lines=1, placeholder="Enter your image description", container=False, ) with gr.Row(): target_prompt = gr.Text( label="Edit prompt", show_label=False, max_lines=1, placeholder="Enter your edit prompt", container=False, ) with gr.Accordion("Advanced Settings", open=False): with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, ) num_inference_steps = gr.Slider( label="Number of RNRI iterations", minimum=1, maximum=12, step=1, value=2, ) with gr.Row(): run_button = gr.Button("Edit", scale=0) with gr.Column(elem_id="col-container"): result = gr.Image(label="Result", show_label=False) # gr.Examples( # examples = examples, # inputs = [prompt] # ) run_button.click( fn = infer, inputs = [input_image, description_prompt, target_prompt, guidance_scale, num_inference_steps, num_inference_steps], outputs = [result] ) demo.queue().launch()