Spaces:
Runtime error
Runtime error
Update src/euler_scheduler.py
Browse filesadded function set_noise_list_device(device)
- src/euler_scheduler.py +589 -583
src/euler_scheduler.py
CHANGED
@@ -1,584 +1,590 @@
|
|
1 |
-
# Code is based on ReNoise https://github.com/garibida/ReNoise-Inversion
|
2 |
-
|
3 |
-
from diffusers import EulerAncestralDiscreteScheduler
|
4 |
-
from diffusers.utils import BaseOutput
|
5 |
-
import torch
|
6 |
-
from typing import List, Optional, Tuple, Union
|
7 |
-
import numpy as np
|
8 |
-
|
9 |
-
from src.eunms import Epsilon_Update_Type
|
10 |
-
|
11 |
-
class EulerAncestralDiscreteSchedulerOutput(BaseOutput):
|
12 |
-
"""
|
13 |
-
Output class for the scheduler's `step` function output.
|
14 |
-
|
15 |
-
Args:
|
16 |
-
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
17 |
-
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
18 |
-
denoising loop.
|
19 |
-
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
20 |
-
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
21 |
-
`pred_original_sample` can be used to preview progress or for guidance.
|
22 |
-
"""
|
23 |
-
|
24 |
-
prev_sample: torch.FloatTensor
|
25 |
-
pred_original_sample: Optional[torch.FloatTensor] = None
|
26 |
-
|
27 |
-
class MyEulerAncestralDiscreteScheduler(EulerAncestralDiscreteScheduler):
|
28 |
-
def set_noise_list(self, noise_list):
|
29 |
-
self.noise_list = noise_list
|
30 |
-
|
31 |
-
def
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
`torch.FloatTensor
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
)
|
111 |
-
|
112 |
-
self.
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
)
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
prev_sample =
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
self.
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
)
|
217 |
-
|
218 |
-
self.
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
)
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
self.
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
)
|
333 |
-
|
334 |
-
self.
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
)
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
#
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
#
|
373 |
-
|
374 |
-
prev_sample =
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
self.
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
#
|
425 |
-
#
|
426 |
-
#
|
427 |
-
#
|
428 |
-
#
|
429 |
-
#
|
430 |
-
#
|
431 |
-
#
|
432 |
-
#
|
433 |
-
#
|
434 |
-
#
|
435 |
-
#
|
436 |
-
#
|
437 |
-
#
|
438 |
-
|
439 |
-
#
|
440 |
-
#
|
441 |
-
#
|
442 |
-
#
|
443 |
-
# )
|
444 |
-
|
445 |
-
# self.
|
446 |
-
|
447 |
-
#
|
448 |
-
|
449 |
-
#
|
450 |
-
|
451 |
-
#
|
452 |
-
|
453 |
-
#
|
454 |
-
|
455 |
-
|
456 |
-
#
|
457 |
-
#
|
458 |
-
|
459 |
-
#
|
460 |
-
#
|
461 |
-
|
462 |
-
#
|
463 |
-
|
464 |
-
|
465 |
-
#
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
# if
|
471 |
-
#
|
472 |
-
|
473 |
-
#
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
#
|
480 |
-
#
|
481 |
-
#
|
482 |
-
|
483 |
-
|
484 |
-
#
|
485 |
-
#
|
486 |
-
#
|
487 |
-
#
|
488 |
-
#
|
489 |
-
#
|
490 |
-
|
491 |
-
#
|
492 |
-
#
|
493 |
-
#
|
494 |
-
#
|
495 |
-
#
|
496 |
-
|
497 |
-
#
|
498 |
-
#
|
499 |
-
#
|
500 |
-
#
|
501 |
-
#
|
502 |
-
#
|
503 |
-
|
504 |
-
#
|
505 |
-
#
|
506 |
-
#
|
507 |
-
#
|
508 |
-
#
|
509 |
-
|
510 |
-
#
|
511 |
-
|
512 |
-
#
|
513 |
-
#
|
514 |
-
#
|
515 |
-
|
516 |
-
#
|
517 |
-
|
518 |
-
#
|
519 |
-
#
|
520 |
-
#
|
521 |
-
#
|
522 |
-
#
|
523 |
-
#
|
524 |
-
|
525 |
-
#
|
526 |
-
#
|
527 |
-
#
|
528 |
-
#
|
529 |
-
# )
|
530 |
-
|
531 |
-
# self.
|
532 |
-
|
533 |
-
#
|
534 |
-
|
535 |
-
#
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
#
|
540 |
-
|
541 |
-
#
|
542 |
-
#
|
543 |
-
|
544 |
-
#
|
545 |
-
#
|
546 |
-
#
|
547 |
-
#
|
548 |
-
#
|
549 |
-
# )
|
550 |
-
|
551 |
-
#
|
552 |
-
#
|
553 |
-
#
|
554 |
-
#
|
555 |
-
|
556 |
-
|
557 |
-
#
|
558 |
-
#
|
559 |
-
|
560 |
-
#
|
561 |
-
|
562 |
-
#
|
563 |
-
|
564 |
-
#
|
565 |
-
|
566 |
-
#
|
567 |
-
|
568 |
-
#
|
569 |
-
|
570 |
-
|
571 |
-
#
|
572 |
-
|
573 |
-
|
574 |
-
#
|
575 |
-
|
576 |
-
|
577 |
-
# self.
|
578 |
-
|
579 |
-
#
|
580 |
-
#
|
581 |
-
|
582 |
-
#
|
583 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
584 |
# )
|
|
|
1 |
+
# Code is based on ReNoise https://github.com/garibida/ReNoise-Inversion
|
2 |
+
|
3 |
+
from diffusers import EulerAncestralDiscreteScheduler
|
4 |
+
from diffusers.utils import BaseOutput
|
5 |
+
import torch
|
6 |
+
from typing import List, Optional, Tuple, Union
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from src.eunms import Epsilon_Update_Type
|
10 |
+
|
11 |
+
class EulerAncestralDiscreteSchedulerOutput(BaseOutput):
|
12 |
+
"""
|
13 |
+
Output class for the scheduler's `step` function output.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
17 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
18 |
+
denoising loop.
|
19 |
+
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
20 |
+
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
21 |
+
`pred_original_sample` can be used to preview progress or for guidance.
|
22 |
+
"""
|
23 |
+
|
24 |
+
prev_sample: torch.FloatTensor
|
25 |
+
pred_original_sample: Optional[torch.FloatTensor] = None
|
26 |
+
|
27 |
+
class MyEulerAncestralDiscreteScheduler(EulerAncestralDiscreteScheduler):
|
28 |
+
def set_noise_list(self, noise_list):
|
29 |
+
self.noise_list = noise_list
|
30 |
+
|
31 |
+
def set_noise_list_device(self, device):
|
32 |
+
if self.noise_list[0].device == device:
|
33 |
+
return
|
34 |
+
for i in range(len(self.noise_list)):
|
35 |
+
self.noise_list[i] = self.noise_list[i].to(device)
|
36 |
+
|
37 |
+
def get_noise_to_remove(self):
|
38 |
+
sigma_from = self.sigmas[self.step_index]
|
39 |
+
sigma_to = self.sigmas[self.step_index + 1]
|
40 |
+
sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
|
41 |
+
|
42 |
+
return self.noise_list[self.step_index] * sigma_up\
|
43 |
+
|
44 |
+
def scale_model_input(
|
45 |
+
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
|
46 |
+
) -> torch.FloatTensor:
|
47 |
+
"""
|
48 |
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
49 |
+
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
sample (`torch.FloatTensor`):
|
53 |
+
The input sample.
|
54 |
+
timestep (`int`, *optional*):
|
55 |
+
The current timestep in the diffusion chain.
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
`torch.FloatTensor`:
|
59 |
+
A scaled input sample.
|
60 |
+
"""
|
61 |
+
|
62 |
+
self._init_step_index(timestep.view((1)))
|
63 |
+
return EulerAncestralDiscreteScheduler.scale_model_input(self, sample, timestep)
|
64 |
+
|
65 |
+
|
66 |
+
def step(
|
67 |
+
self,
|
68 |
+
model_output: torch.FloatTensor,
|
69 |
+
timestep: Union[float, torch.FloatTensor],
|
70 |
+
sample: torch.FloatTensor,
|
71 |
+
generator: Optional[torch.Generator] = None,
|
72 |
+
return_dict: bool = True,
|
73 |
+
) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
|
74 |
+
"""
|
75 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
76 |
+
process from the learned model outputs (most often the predicted noise).
|
77 |
+
|
78 |
+
Args:
|
79 |
+
model_output (`torch.FloatTensor`):
|
80 |
+
The direct output from learned diffusion model.
|
81 |
+
timestep (`float`):
|
82 |
+
The current discrete timestep in the diffusion chain.
|
83 |
+
sample (`torch.FloatTensor`):
|
84 |
+
A current instance of a sample created by the diffusion process.
|
85 |
+
generator (`torch.Generator`, *optional*):
|
86 |
+
A random number generator.
|
87 |
+
return_dict (`bool`):
|
88 |
+
Whether or not to return a
|
89 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
|
93 |
+
If return_dict is `True`,
|
94 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
|
95 |
+
otherwise a tuple is returned where the first element is the sample tensor.
|
96 |
+
|
97 |
+
"""
|
98 |
+
|
99 |
+
if (
|
100 |
+
isinstance(timestep, int)
|
101 |
+
or isinstance(timestep, torch.IntTensor)
|
102 |
+
or isinstance(timestep, torch.LongTensor)
|
103 |
+
):
|
104 |
+
raise ValueError(
|
105 |
+
(
|
106 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
107 |
+
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
108 |
+
" one of the `scheduler.timesteps` as a timestep."
|
109 |
+
),
|
110 |
+
)
|
111 |
+
|
112 |
+
if not self.is_scale_input_called:
|
113 |
+
logger.warning(
|
114 |
+
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
115 |
+
"See `StableDiffusionPipeline` for a usage example."
|
116 |
+
)
|
117 |
+
|
118 |
+
self._init_step_index(timestep.view((1)))
|
119 |
+
|
120 |
+
sigma = self.sigmas[self.step_index]
|
121 |
+
|
122 |
+
# Upcast to avoid precision issues when computing prev_sample
|
123 |
+
sample = sample.to(torch.float32)
|
124 |
+
|
125 |
+
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
126 |
+
if self.config.prediction_type == "epsilon":
|
127 |
+
pred_original_sample = sample - sigma * model_output
|
128 |
+
elif self.config.prediction_type == "v_prediction":
|
129 |
+
# * c_out + input * c_skip
|
130 |
+
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
|
131 |
+
elif self.config.prediction_type == "sample":
|
132 |
+
raise NotImplementedError("prediction_type not implemented yet: sample")
|
133 |
+
else:
|
134 |
+
raise ValueError(
|
135 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
|
136 |
+
)
|
137 |
+
|
138 |
+
sigma_from = self.sigmas[self.step_index]
|
139 |
+
sigma_to = self.sigmas[self.step_index + 1]
|
140 |
+
sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
|
141 |
+
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
142 |
+
|
143 |
+
# 2. Convert to an ODE derivative
|
144 |
+
# derivative = (sample - pred_original_sample) / sigma
|
145 |
+
derivative = model_output
|
146 |
+
|
147 |
+
dt = sigma_down - sigma
|
148 |
+
|
149 |
+
prev_sample = sample + derivative * dt
|
150 |
+
|
151 |
+
device = model_output.device
|
152 |
+
# noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator)
|
153 |
+
# prev_sample = prev_sample + noise * sigma_up
|
154 |
+
|
155 |
+
prev_sample = prev_sample + self.noise_list[self.step_index] * sigma_up
|
156 |
+
|
157 |
+
# Cast sample back to model compatible dtype
|
158 |
+
prev_sample = prev_sample.to(model_output.dtype)
|
159 |
+
|
160 |
+
# upon completion increase step index by one
|
161 |
+
self._step_index += 1
|
162 |
+
|
163 |
+
if not return_dict:
|
164 |
+
return (prev_sample,)
|
165 |
+
|
166 |
+
return EulerAncestralDiscreteSchedulerOutput(
|
167 |
+
prev_sample=prev_sample, pred_original_sample=pred_original_sample
|
168 |
+
)
|
169 |
+
|
170 |
+
def step_and_update_noise(
|
171 |
+
self,
|
172 |
+
model_output: torch.FloatTensor,
|
173 |
+
timestep: Union[float, torch.FloatTensor],
|
174 |
+
sample: torch.FloatTensor,
|
175 |
+
expected_prev_sample: torch.FloatTensor,
|
176 |
+
update_epsilon_type=Epsilon_Update_Type.OVERRIDE,
|
177 |
+
generator: Optional[torch.Generator] = None,
|
178 |
+
return_dict: bool = True,
|
179 |
+
) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
|
180 |
+
"""
|
181 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
182 |
+
process from the learned model outputs (most often the predicted noise).
|
183 |
+
|
184 |
+
Args:
|
185 |
+
model_output (`torch.FloatTensor`):
|
186 |
+
The direct output from learned diffusion model.
|
187 |
+
timestep (`float`):
|
188 |
+
The current discrete timestep in the diffusion chain.
|
189 |
+
sample (`torch.FloatTensor`):
|
190 |
+
A current instance of a sample created by the diffusion process.
|
191 |
+
generator (`torch.Generator`, *optional*):
|
192 |
+
A random number generator.
|
193 |
+
return_dict (`bool`):
|
194 |
+
Whether or not to return a
|
195 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
|
196 |
+
|
197 |
+
Returns:
|
198 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
|
199 |
+
If return_dict is `True`,
|
200 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
|
201 |
+
otherwise a tuple is returned where the first element is the sample tensor.
|
202 |
+
|
203 |
+
"""
|
204 |
+
|
205 |
+
if (
|
206 |
+
isinstance(timestep, int)
|
207 |
+
or isinstance(timestep, torch.IntTensor)
|
208 |
+
or isinstance(timestep, torch.LongTensor)
|
209 |
+
):
|
210 |
+
raise ValueError(
|
211 |
+
(
|
212 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
213 |
+
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
214 |
+
" one of the `scheduler.timesteps` as a timestep."
|
215 |
+
),
|
216 |
+
)
|
217 |
+
|
218 |
+
if not self.is_scale_input_called:
|
219 |
+
logger.warning(
|
220 |
+
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
221 |
+
"See `StableDiffusionPipeline` for a usage example."
|
222 |
+
)
|
223 |
+
|
224 |
+
self._init_step_index(timestep.view((1)))
|
225 |
+
|
226 |
+
sigma = self.sigmas[self.step_index]
|
227 |
+
|
228 |
+
# Upcast to avoid precision issues when computing prev_sample
|
229 |
+
sample = sample.to(torch.float32)
|
230 |
+
|
231 |
+
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
232 |
+
if self.config.prediction_type == "epsilon":
|
233 |
+
pred_original_sample = sample - sigma * model_output
|
234 |
+
elif self.config.prediction_type == "v_prediction":
|
235 |
+
# * c_out + input * c_skip
|
236 |
+
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
|
237 |
+
elif self.config.prediction_type == "sample":
|
238 |
+
raise NotImplementedError("prediction_type not implemented yet: sample")
|
239 |
+
else:
|
240 |
+
raise ValueError(
|
241 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
|
242 |
+
)
|
243 |
+
|
244 |
+
sigma_from = self.sigmas[self.step_index]
|
245 |
+
sigma_to = self.sigmas[self.step_index + 1]
|
246 |
+
sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
|
247 |
+
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
248 |
+
|
249 |
+
# 2. Convert to an ODE derivative
|
250 |
+
# derivative = (sample - pred_original_sample) / sigma
|
251 |
+
derivative = model_output
|
252 |
+
|
253 |
+
dt = sigma_down - sigma
|
254 |
+
|
255 |
+
prev_sample = sample + derivative * dt
|
256 |
+
|
257 |
+
device = model_output.device
|
258 |
+
# noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator)
|
259 |
+
# prev_sample = prev_sample + noise * sigma_up
|
260 |
+
|
261 |
+
if sigma_up > 0:
|
262 |
+
req_noise = (expected_prev_sample - prev_sample) / sigma_up
|
263 |
+
if update_epsilon_type == Epsilon_Update_Type.OVERRIDE:
|
264 |
+
self.noise_list[self.step_index] = req_noise
|
265 |
+
else:
|
266 |
+
for i in range(10):
|
267 |
+
n = torch.autograd.Variable(self.noise_list[self.step_index].detach().clone(), requires_grad=True)
|
268 |
+
loss = torch.norm(n - req_noise.detach())
|
269 |
+
loss.backward()
|
270 |
+
self.noise_list[self.step_index] -= n.grad.detach() * 1.8
|
271 |
+
|
272 |
+
|
273 |
+
prev_sample = prev_sample + self.noise_list[self.step_index] * sigma_up
|
274 |
+
|
275 |
+
# Cast sample back to model compatible dtype
|
276 |
+
prev_sample = prev_sample.to(model_output.dtype)
|
277 |
+
|
278 |
+
# upon completion increase step index by one
|
279 |
+
self._step_index += 1
|
280 |
+
|
281 |
+
if not return_dict:
|
282 |
+
return (prev_sample,)
|
283 |
+
|
284 |
+
return EulerAncestralDiscreteSchedulerOutput(
|
285 |
+
prev_sample=prev_sample, pred_original_sample=pred_original_sample
|
286 |
+
)
|
287 |
+
|
288 |
+
def inv_step(
|
289 |
+
self,
|
290 |
+
model_output: torch.FloatTensor,
|
291 |
+
timestep: Union[float, torch.FloatTensor],
|
292 |
+
sample: torch.FloatTensor,
|
293 |
+
generator: Optional[torch.Generator] = None,
|
294 |
+
return_dict: bool = True,
|
295 |
+
) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
|
296 |
+
"""
|
297 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
298 |
+
process from the learned model outputs (most often the predicted noise).
|
299 |
+
|
300 |
+
Args:
|
301 |
+
model_output (`torch.FloatTensor`):
|
302 |
+
The direct output from learned diffusion model.
|
303 |
+
timestep (`float`):
|
304 |
+
The current discrete timestep in the diffusion chain.
|
305 |
+
sample (`torch.FloatTensor`):
|
306 |
+
A current instance of a sample created by the diffusion process.
|
307 |
+
generator (`torch.Generator`, *optional*):
|
308 |
+
A random number generator.
|
309 |
+
return_dict (`bool`):
|
310 |
+
Whether or not to return a
|
311 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
|
312 |
+
|
313 |
+
Returns:
|
314 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
|
315 |
+
If return_dict is `True`,
|
316 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
|
317 |
+
otherwise a tuple is returned where the first element is the sample tensor.
|
318 |
+
|
319 |
+
"""
|
320 |
+
|
321 |
+
if (
|
322 |
+
isinstance(timestep, int)
|
323 |
+
or isinstance(timestep, torch.IntTensor)
|
324 |
+
or isinstance(timestep, torch.LongTensor)
|
325 |
+
):
|
326 |
+
raise ValueError(
|
327 |
+
(
|
328 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
329 |
+
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
330 |
+
" one of the `scheduler.timesteps` as a timestep."
|
331 |
+
),
|
332 |
+
)
|
333 |
+
|
334 |
+
if not self.is_scale_input_called:
|
335 |
+
logger.warning(
|
336 |
+
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
337 |
+
"See `StableDiffusionPipeline` for a usage example."
|
338 |
+
)
|
339 |
+
|
340 |
+
self._init_step_index(timestep.view((1)))
|
341 |
+
|
342 |
+
sigma = self.sigmas[self.step_index]
|
343 |
+
|
344 |
+
# Upcast to avoid precision issues when computing prev_sample
|
345 |
+
sample = sample.to(torch.float32)
|
346 |
+
|
347 |
+
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
348 |
+
if self.config.prediction_type == "epsilon":
|
349 |
+
pred_original_sample = sample - sigma * model_output
|
350 |
+
elif self.config.prediction_type == "v_prediction":
|
351 |
+
# * c_out + input * c_skip
|
352 |
+
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
|
353 |
+
elif self.config.prediction_type == "sample":
|
354 |
+
raise NotImplementedError("prediction_type not implemented yet: sample")
|
355 |
+
else:
|
356 |
+
raise ValueError(
|
357 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
|
358 |
+
)
|
359 |
+
|
360 |
+
sigma_from = self.sigmas[self.step_index]
|
361 |
+
sigma_to = self.sigmas[self.step_index+1]
|
362 |
+
# sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
|
363 |
+
sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2).abs() / sigma_from**2) ** 0.5
|
364 |
+
# sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
365 |
+
sigma_down = sigma_to**2 / sigma_from
|
366 |
+
|
367 |
+
# 2. Convert to an ODE derivative
|
368 |
+
# derivative = (sample - pred_original_sample) / sigma
|
369 |
+
derivative = model_output
|
370 |
+
|
371 |
+
dt = sigma_down - sigma
|
372 |
+
# dt = sigma_down - sigma_from
|
373 |
+
|
374 |
+
prev_sample = sample - derivative * dt
|
375 |
+
|
376 |
+
device = model_output.device
|
377 |
+
# noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator)
|
378 |
+
# prev_sample = prev_sample + noise * sigma_up
|
379 |
+
|
380 |
+
prev_sample = prev_sample - self.noise_list[self.step_index] * sigma_up
|
381 |
+
|
382 |
+
# Cast sample back to model compatible dtype
|
383 |
+
prev_sample = prev_sample.to(model_output.dtype)
|
384 |
+
|
385 |
+
# upon completion increase step index by one
|
386 |
+
self._step_index += 1
|
387 |
+
|
388 |
+
if not return_dict:
|
389 |
+
return (prev_sample,)
|
390 |
+
|
391 |
+
return EulerAncestralDiscreteSchedulerOutput(
|
392 |
+
prev_sample=prev_sample, pred_original_sample=pred_original_sample
|
393 |
+
)
|
394 |
+
|
395 |
+
def get_all_sigmas(self) -> torch.FloatTensor:
|
396 |
+
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
397 |
+
sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
|
398 |
+
return torch.from_numpy(sigmas)
|
399 |
+
|
400 |
+
def add_noise_off_schedule(
|
401 |
+
self,
|
402 |
+
original_samples: torch.FloatTensor,
|
403 |
+
noise: torch.FloatTensor,
|
404 |
+
timesteps: torch.FloatTensor,
|
405 |
+
) -> torch.FloatTensor:
|
406 |
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
407 |
+
sigmas = self.get_all_sigmas()
|
408 |
+
sigmas = sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
409 |
+
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
410 |
+
# mps does not support float64
|
411 |
+
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
412 |
+
else:
|
413 |
+
timesteps = timesteps.to(original_samples.device)
|
414 |
+
|
415 |
+
step_indices = 1000 - int(timesteps.item())
|
416 |
+
|
417 |
+
sigma = sigmas[step_indices].flatten()
|
418 |
+
while len(sigma.shape) < len(original_samples.shape):
|
419 |
+
sigma = sigma.unsqueeze(-1)
|
420 |
+
|
421 |
+
noisy_samples = original_samples + noise * sigma
|
422 |
+
return noisy_samples
|
423 |
+
|
424 |
+
# def update_noise_for_friendly_inversion(
|
425 |
+
# self,
|
426 |
+
# model_output: torch.FloatTensor,
|
427 |
+
# timestep: Union[float, torch.FloatTensor],
|
428 |
+
# z_t: torch.FloatTensor,
|
429 |
+
# z_tp1: torch.FloatTensor,
|
430 |
+
# return_dict: bool = True,
|
431 |
+
# ) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
|
432 |
+
# if (
|
433 |
+
# isinstance(timestep, int)
|
434 |
+
# or isinstance(timestep, torch.IntTensor)
|
435 |
+
# or isinstance(timestep, torch.LongTensor)
|
436 |
+
# ):
|
437 |
+
# raise ValueError(
|
438 |
+
# (
|
439 |
+
# "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
440 |
+
# " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
441 |
+
# " one of the `scheduler.timesteps` as a timestep."
|
442 |
+
# ),
|
443 |
+
# )
|
444 |
+
|
445 |
+
# if not self.is_scale_input_called:
|
446 |
+
# logger.warning(
|
447 |
+
# "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
448 |
+
# "See `StableDiffusionPipeline` for a usage example."
|
449 |
+
# )
|
450 |
+
|
451 |
+
# self._init_step_index(timestep.view((1)))
|
452 |
+
|
453 |
+
# sigma = self.sigmas[self.step_index]
|
454 |
+
|
455 |
+
# sigma_from = self.sigmas[self.step_index]
|
456 |
+
# sigma_to = self.sigmas[self.step_index+1]
|
457 |
+
# # sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
|
458 |
+
# sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2).abs() / sigma_from**2) ** 0.5
|
459 |
+
# # sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
460 |
+
# sigma_down = sigma_to**2 / sigma_from
|
461 |
+
|
462 |
+
# # 2. Conv = (sample - pred_original_sample) / sigma
|
463 |
+
# derivative = model_output
|
464 |
+
|
465 |
+
# dt = sigma_down - sigma
|
466 |
+
# # dt = sigma_down - sigma_from
|
467 |
+
|
468 |
+
# prev_sample = z_t - derivative * dt
|
469 |
+
|
470 |
+
# if sigma_up > 0:
|
471 |
+
# self.noise_list[self.step_index] = (prev_sample - z_tp1) / sigma_up
|
472 |
+
|
473 |
+
# prev_sample = prev_sample - self.noise_list[self.step_index] * sigma_up
|
474 |
+
|
475 |
+
|
476 |
+
# if not return_dict:
|
477 |
+
# return (prev_sample,)
|
478 |
+
|
479 |
+
# return EulerAncestralDiscreteSchedulerOutput(
|
480 |
+
# prev_sample=prev_sample, pred_original_sample=None
|
481 |
+
# )
|
482 |
+
|
483 |
+
|
484 |
+
# def step_friendly_inversion(
|
485 |
+
# self,
|
486 |
+
# model_output: torch.FloatTensor,
|
487 |
+
# timestep: Union[float, torch.FloatTensor],
|
488 |
+
# sample: torch.FloatTensor,
|
489 |
+
# generator: Optional[torch.Generator] = None,
|
490 |
+
# return_dict: bool = True,
|
491 |
+
# expected_next_sample: torch.FloatTensor = None,
|
492 |
+
# ) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
|
493 |
+
# """
|
494 |
+
# Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
495 |
+
# process from the learned model outputs (most often the predicted noise).
|
496 |
+
|
497 |
+
# Args:
|
498 |
+
# model_output (`torch.FloatTensor`):
|
499 |
+
# The direct output from learned diffusion model.
|
500 |
+
# timestep (`float`):
|
501 |
+
# The current discrete timestep in the diffusion chain.
|
502 |
+
# sample (`torch.FloatTensor`):
|
503 |
+
# A current instance of a sample created by the diffusion process.
|
504 |
+
# generator (`torch.Generator`, *optional*):
|
505 |
+
# A random number generator.
|
506 |
+
# return_dict (`bool`):
|
507 |
+
# Whether or not to return a
|
508 |
+
# [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
|
509 |
+
|
510 |
+
# Returns:
|
511 |
+
# [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
|
512 |
+
# If return_dict is `True`,
|
513 |
+
# [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
|
514 |
+
# otherwise a tuple is returned where the first element is the sample tensor.
|
515 |
+
|
516 |
+
# """
|
517 |
+
|
518 |
+
# if (
|
519 |
+
# isinstance(timestep, int)
|
520 |
+
# or isinstance(timestep, torch.IntTensor)
|
521 |
+
# or isinstance(timestep, torch.LongTensor)
|
522 |
+
# ):
|
523 |
+
# raise ValueError(
|
524 |
+
# (
|
525 |
+
# "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
526 |
+
# " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
527 |
+
# " one of the `scheduler.timesteps` as a timestep."
|
528 |
+
# ),
|
529 |
+
# )
|
530 |
+
|
531 |
+
# if not self.is_scale_input_called:
|
532 |
+
# logger.warning(
|
533 |
+
# "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
534 |
+
# "See `StableDiffusionPipeline` for a usage example."
|
535 |
+
# )
|
536 |
+
|
537 |
+
# self._init_step_index(timestep.view((1)))
|
538 |
+
|
539 |
+
# sigma = self.sigmas[self.step_index]
|
540 |
+
|
541 |
+
# # Upcast to avoid precision issues when computing prev_sample
|
542 |
+
# sample = sample.to(torch.float32)
|
543 |
+
|
544 |
+
# # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
545 |
+
# if self.config.prediction_type == "epsilon":
|
546 |
+
# pred_original_sample = sample - sigma * model_output
|
547 |
+
# elif self.config.prediction_type == "v_prediction":
|
548 |
+
# # * c_out + input * c_skip
|
549 |
+
# pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
|
550 |
+
# elif self.config.prediction_type == "sample":
|
551 |
+
# raise NotImplementedError("prediction_type not implemented yet: sample")
|
552 |
+
# else:
|
553 |
+
# raise ValueError(
|
554 |
+
# f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
|
555 |
+
# )
|
556 |
+
|
557 |
+
# sigma_from = self.sigmas[self.step_index]
|
558 |
+
# sigma_to = self.sigmas[self.step_index + 1]
|
559 |
+
# sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
|
560 |
+
# sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
561 |
+
|
562 |
+
# # 2. Convert to an ODE derivative
|
563 |
+
# # derivative = (sample - pred_original_sample) / sigma
|
564 |
+
# derivative = model_output
|
565 |
+
|
566 |
+
# dt = sigma_down - sigma
|
567 |
+
|
568 |
+
# prev_sample = sample + derivative * dt
|
569 |
+
|
570 |
+
# device = model_output.device
|
571 |
+
# # noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator)
|
572 |
+
# # prev_sample = prev_sample + noise * sigma_up
|
573 |
+
|
574 |
+
# if sigma_up > 0:
|
575 |
+
# self.noise_list[self.step_index] = (expected_next_sample - prev_sample) / sigma_up
|
576 |
+
|
577 |
+
# prev_sample = prev_sample + self.noise_list[self.step_index] * sigma_up
|
578 |
+
|
579 |
+
# # Cast sample back to model compatible dtype
|
580 |
+
# prev_sample = prev_sample.to(model_output.dtype)
|
581 |
+
|
582 |
+
# # upon completion increase step index by one
|
583 |
+
# self._step_index += 1
|
584 |
+
|
585 |
+
# if not return_dict:
|
586 |
+
# return (prev_sample,)
|
587 |
+
|
588 |
+
# return EulerAncestralDiscreteSchedulerOutput(
|
589 |
+
# prev_sample=prev_sample, pred_original_sample=pred_original_sample
|
590 |
# )
|