File size: 18,988 Bytes
4a04dae 1bfb2c8 4a04dae 5d96110 4a04dae 5d96110 4a04dae 1bfb2c8 839ab4c 1bfb2c8 839ab4c 1bfb2c8 5d96110 8eb6c1b 4a04dae 1bfb2c8 fc4d759 839ab4c 4a04dae 5da1288 1bfb2c8 5da1288 1bfb2c8 5da1288 1bfb2c8 5da1288 1bfb2c8 839ab4c 1bfb2c8 839ab4c 1bfb2c8 839ab4c 1bfb2c8 839ab4c 1bfb2c8 5da1288 8eb6c1b 4a04dae 5d96110 839ab4c 5d96110 f46873e 8eb6c1b b6c6048 8eb6c1b 4a04dae 8eb6c1b 4a04dae eb21acb 8eb6c1b eb21acb 8eb6c1b eb21acb 4a04dae 2b31c2c 1107c5d 2b31c2c 839ab4c 2b31c2c 839ab4c 2b31c2c 1107c5d 1bfb2c8 d97f0d8 8eb6c1b 1bfb2c8 fc4d759 1bfb2c8 8eb6c1b 1bfb2c8 5da1288 839ab4c 5da1288 1bfb2c8 8eb6c1b 839ab4c 5d96110 1bfb2c8 8eb6c1b 1bfb2c8 8eb6c1b 1bfb2c8 5d96110 839ab4c 5d96110 839ab4c 1bfb2c8 839ab4c b6c6048 8043b53 b6c6048 8043b53 839ab4c 1bfb2c8 839ab4c 1bfb2c8 839ab4c 1bfb2c8 839ab4c ca5997d 839ab4c 1bfb2c8 839ab4c 1bfb2c8 839ab4c 1bfb2c8 839ab4c 1bfb2c8 839ab4c 1bfb2c8 839ab4c 1bfb2c8 6fdb9ae 1bfb2c8 6fdb9ae 1bfb2c8 6fdb9ae 1bfb2c8 6fdb9ae 5d96110 6fdb9ae 839ab4c 6fdb9ae dc23696 5d96110 dc23696 1bfb2c8 6fdb9ae dc23696 27a4f8e 839ab4c 1bfb2c8 27a4f8e 1bfb2c8 839ab4c 27a4f8e 6fdb9ae 1bfb2c8 6fdb9ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
import tempfile
import logging
import os
import asyncio
import gc
import psutil
from moviepy.editor import *
import edge_tts
import gradio as gr
from pydub import AudioSegment
# Configuraci贸n de Logs
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# CONSTANTES DE ARCHIVOS
INTRO_VIDEO = "introvideo.mp4"
OUTRO_VIDEO = "outrovideo.mp4"
MUSIC_BG = "musicafondo.mp3"
EJEMPLO_VIDEO = "ejemplo.mp4"
# CONSTANTES DE LIMITACIONES
MAX_VIDEO_SIZE = 200 * 1024 * 1024 # Tama帽o m谩ximo en bytes (200MB)
MAX_RESOLUTION = (640, 360) # Resoluci贸n m谩xima (360p para optimizar)
# Configuraci贸n de chunks
SEGMENT_DURATION = 30 # Duraci贸n exacta entre transiciones (sin overlap)
TRANSITION_DURATION = 1.5 # Duraci贸n del efecto slide
PROCESSING_CHUNK = 120 # Procesar en bloques de 2 minutos para optimizar memoria
# Validar existencia de archivos
for file in [INTRO_VIDEO, OUTRO_VIDEO, MUSIC_BG, EJEMPLO_VIDEO]:
if not os.path.exists(file):
logging.error(f"Falta archivo necesario: {file}")
raise FileNotFoundError(f"Falta: {file}")
def mostrar_uso_memoria():
proceso = psutil.Process(os.getpid())
memoria_uso = proceso.memory_info().rss / 1024 / 1024
logging.info(f"Uso de memoria: {memoria_uso:.2f} MB")
def eliminar_archivo_tiempo(ruta, delay=3600):
def eliminar():
try:
if os.path.exists(ruta):
os.remove(ruta)
logging.info(f"Archivo eliminado: {ruta}")
except Exception as e:
logging.error(f"Error al eliminar {ruta}: {e}")
from threading import Timer
Timer(delay, eliminar).start()
def validar_video(video_path):
try:
# Comprobar tama帽o del archivo
file_size = os.path.getsize(video_path)
if file_size > MAX_VIDEO_SIZE:
logging.warning(f"El video excede el tama帽o m谩ximo: {file_size/1024/1024:.2f}MB > {MAX_VIDEO_SIZE/1024/1024}MB")
return False
# Validar que es un video
clip = VideoFileClip(video_path)
duracion = clip.duration
clip.close()
return True
except Exception as e:
logging.error(f"El video no es v谩lido: {e}")
return False
def convertir_video(video_path):
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_converted:
output_path = tmp_converted.name
# Convertir a un formato m谩s eficiente y con menor resoluci贸n para optimizar
os.system(f'ffmpeg -i "{video_path}" -vf "scale={MAX_RESOLUTION[0]}:{MAX_RESOLUTION[1]}" -c:v libx264 -crf 28 -preset ultrafast -c:a aac -b:a 96k "{output_path}" -y')
# Comprobar si ahora cumple las limitaciones de tama帽o
if not validar_video(output_path):
# Si sigue sin cumplir, aumentar la compresi贸n
os.system(f'ffmpeg -i "{output_path}" -vf "scale={MAX_RESOLUTION[0]}:{MAX_RESOLUTION[1]}" -c:v libx264 -crf 32 -preset ultrafast -c:a aac -b:a 64k "{output_path}.tmp" -y')
os.remove(output_path)
os.rename(f"{output_path}.tmp", output_path)
return output_path
except Exception as e:
logging.error(f"Error al convertir el video: {e}")
raise
async def generar_tts(texto, voz, duracion_total):
try:
if not texto.strip():
raise ValueError("El texto para TTS no puede estar vac铆o.")
# Limitar el texto a 1000 caracteres para procesar m谩s r谩pido
if len(texto) > 1000:
texto = texto[:1000]
logging.info("Texto para TTS truncado a 1000 caracteres para optimizar rendimiento")
logging.info(f"Generando TTS con voz: {voz}")
communicate = edge_tts.Communicate(texto, voz)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_tts:
await communicate.save(tmp_tts.name)
tts_audio = AudioFileClip(tmp_tts.name)
if tts_audio.duration > duracion_total:
tts_audio = tts_audio.subclip(0, duracion_total)
return tts_audio, tmp_tts.name
except Exception as e:
logging.error(f"Fallo en TTS: {str(e)}")
raise
def crear_musica_fondo(duracion_total):
bg_music = AudioSegment.from_mp3(MUSIC_BG)
needed_ms = int(duracion_total * 1000)
repeticiones = needed_ms // len(bg_music) + 1
bg_music = bg_music * repeticiones
bg_music = bg_music[:needed_ms].fade_out(1000)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_bg:
bg_music.export(tmp_bg.name, format="mp3")
return AudioFileClip(tmp_bg.name).volumex(0.15), tmp_bg.name
def create_slide_transition(clip1, clip2, duration=TRANSITION_DURATION):
part1 = clip1.subclip(clip1.duration - duration)
part2 = clip2.subclip(0, duration)
transition = CompositeVideoClip([
part1.fx(vfx.fadeout, duration),
part2.fx(vfx.fadein, duration).set_position(
lambda t: ('center', MAX_RESOLUTION[1] - (MAX_RESOLUTION[1] * (t/duration)))
)
], size=MAX_RESOLUTION).set_duration(duration) # Reducido para optimizar
return transition
def liberar_memoria(objetos_cerrar=None):
"""Forzar liberaci贸n de memoria cerrando objetos y llamando al recolector de basura"""
if objetos_cerrar:
for obj in objetos_cerrar:
if obj is not None:
try:
obj.close()
except:
pass
# Forzar recolecci贸n de basura
gc.collect()
mostrar_uso_memoria()
async def procesar_video(video_input, texto_tts, voz_seleccionada, progress=gr.Progress()):
temp_files = []
intro, outro, video_original = None, None, None
segmentos_temp = []
try:
mostrar_uso_memoria()
logging.info("Iniciando procesamiento")
progress(0, desc="Validando video")
if not validar_video(video_input):
progress(0.05, desc="Optimizando formato de video")
video_input = convertir_video(video_input)
temp_files.append(video_input)
progress(0.1, desc="Preparando video")
# Reducir resoluci贸n para optimizar procesamiento
video_original = VideoFileClip(video_input)
duracion_video = video_original.duration
video_original.close() # Cerrar para liberar memoria
# Informaci贸n importante sobre el video original
logging.info(f"Duraci贸n total del video: {duracion_video} segundos")
if duracion_video <= 0:
raise ValueError("El video debe tener una duraci贸n mayor que cero.")
progress(0.2, desc="Generando narraci贸n (TTS)")
tts_audio, tts_path = await generar_tts(texto_tts, voz_seleccionada, duracion_video)
temp_files.append(tts_path)
progress(0.3, desc="Preparando m煤sica de fondo")
bg_audio, bg_path = crear_musica_fondo(duracion_video)
temp_files.append(bg_path)
# Procesar por bloques para optimizar memoria
num_chunks = int(duracion_video // PROCESSING_CHUNK) + (1 if duracion_video % PROCESSING_CHUNK > 0 else 0)
logging.info(f"Procesando video en {num_chunks} bloques")
for chunk_idx in range(num_chunks):
chunk_start = chunk_idx * PROCESSING_CHUNK
chunk_end = min((chunk_idx + 1) * PROCESSING_CHUNK, duracion_video)
progress(0.35 + (0.45 * chunk_idx / num_chunks),
desc=f"Procesando bloque {chunk_idx+1}/{num_chunks} ({chunk_start:.1f}s - {chunk_end:.1f}s)")
# Cargar solo la porci贸n del video que necesitamos
chunk_video = VideoFileClip(video_input).subclip(chunk_start, chunk_end)
# Extraer la porci贸n de audio correspondiente a este bloque
# FIX: Correcci贸n para evitar acceder a tiempo m谩s all谩 de la duraci贸n del audio TTS
tts_chunk_end = min(chunk_end, tts_audio.duration)
chunk_tts = None
if chunk_start < tts_audio.duration:
chunk_tts = tts_audio.subclip(chunk_start, tts_chunk_end)
chunk_bg = bg_audio.subclip(chunk_start, chunk_end)
# Crear la mezcla de audio para este bloque
audio_chunks = [chunk_bg]
if chunk_video.audio:
audio_chunks.append(chunk_video.audio.volumex(0.5))
if chunk_tts:
audio_chunks.append(chunk_tts.volumex(0.85))
chunk_audio_final = CompositeAudioClip(audio_chunks)
chunk_video = chunk_video.set_audio(chunk_audio_final)
# Procesar las transiciones dentro de este chunk si es necesario
if chunk_end - chunk_start > SEGMENT_DURATION:
segments_in_chunk = []
segments_count = int((chunk_end - chunk_start) // SEGMENT_DURATION) + \
(1 if (chunk_end - chunk_start) % SEGMENT_DURATION > 0 else 0)
for i in range(segments_count):
seg_start = i * SEGMENT_DURATION
seg_end = min(seg_start + SEGMENT_DURATION, chunk_end - chunk_start)
segment = chunk_video.subclip(seg_start, seg_end)
if i == 0:
segments_in_chunk.append(segment)
else:
prev_segment = segments_in_chunk[-1]
transition = create_slide_transition(prev_segment, segment)
prev_end = prev_segment.duration - TRANSITION_DURATION
if prev_end > 0:
segments_in_chunk[-1] = prev_segment.subclip(0, prev_end)
segments_in_chunk.append(transition)
segments_in_chunk.append(segment)
chunk_processed = concatenate_videoclips(segments_in_chunk, method="compose")
else:
chunk_processed = chunk_video
# Guardar este chunk procesado como archivo temporal
with tempfile.NamedTemporaryFile(delete=False, suffix=f"_chunk{chunk_idx}.mp4") as chunk_file:
chunk_path = chunk_file.name
chunk_processed.write_videofile(
chunk_path,
codec="libx264",
audio_codec="aac",
preset="ultrafast",
bitrate="1M",
ffmpeg_params=["-crf", "28"],
verbose=False
)
segmentos_temp.append(chunk_path)
# Liberar memoria
chunk_video.close()
chunk_processed.close()
liberar_memoria()
# Liberar memoria antes de procesar intro/outro
liberar_memoria([tts_audio, bg_audio])
tts_audio = bg_audio = None
# A帽adir intro y outro
progress(0.85, desc="Preparando intro y outro")
intro = VideoFileClip(INTRO_VIDEO, target_resolution=MAX_RESOLUTION)
with tempfile.NamedTemporaryFile(delete=False, suffix="_intro.mp4") as tmp_intro:
intro.write_videofile(
tmp_intro.name,
codec="libx264",
audio_codec="aac",
preset="ultrafast",
bitrate="1M",
ffmpeg_params=["-crf", "28"],
verbose=False
)
segmentos_temp.insert(0, tmp_intro.name) # Intro al principio
intro.close()
outro = VideoFileClip(OUTRO_VIDEO, target_resolution=MAX_RESOLUTION)
with tempfile.NamedTemporaryFile(delete=False, suffix="_outro.mp4") as tmp_outro:
outro.write_videofile(
tmp_outro.name,
codec="libx264",
audio_codec="aac",
preset="ultrafast",
bitrate="1M",
ffmpeg_params=["-crf", "28"],
verbose=False
)
segmentos_temp.append(tmp_outro.name) # Outro al final
outro.close()
# Unir todos los segmentos con ffmpeg
progress(0.9, desc="Generando video final")
with tempfile.NamedTemporaryFile(suffix=".txt", delete=False) as concat_file:
# Escribir archivo de lista para concatenaci贸n
for segment in segmentos_temp:
concat_file.write(f"file '{segment}'\n".encode())
concat_path = concat_file.name
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_final:
output_path = tmp_final.name
os.system(f'ffmpeg -f concat -safe 0 -i "{concat_path}" -c copy "{output_path}" -y')
# Limpiar archivos temporales
os.remove(concat_path)
for segment in segmentos_temp:
if os.path.exists(segment):
os.remove(segment)
eliminar_archivo_tiempo(output_path, 3600) # Eliminaci贸n despu茅s de 1 hora
progress(1.0, desc="隆Video listo!")
logging.info(f"Video final guardado: {output_path}")
mostrar_uso_memoria()
return output_path
except Exception as e:
logging.error(f"Fallo general: {str(e)}")
raise
finally:
try:
liberar_memoria([video_original, intro, outro])
for file in temp_files:
try:
if os.path.exists(file):
os.remove(file)
except Exception as e:
logging.warning(f"Error limpiando {file}: {e}")
for segment in segmentos_temp:
try:
if os.path.exists(segment):
os.remove(segment)
except Exception as e:
logging.warning(f"Error limpiando segmento {segment}: {e}")
except Exception as e:
logging.warning(f"Error al cerrar recursos: {str(e)}")
# Interfaz Gradio
with gr.Blocks() as demo:
gr.Markdown("# Editor de Video con IA")
with gr.Tab("Principal"):
video_input = gr.Video(label="Subir video")
texto_tts = gr.Textbox(
label="Texto para TTS (m谩x. 1000 caracteres)",
lines=3,
placeholder="Escribe aqu铆 tu texto..."
)
voz_seleccionada = gr.Dropdown(
label="Voz",
choices=[
"es-ES-AlvaroNeural", "es-MX-BeatrizNeural",
"es-ES-ElviraNeural", "es-MX-JavierNeural",
"es-AR-ElenaNeural", "es-AR-TomasNeural",
"es-CL-CatalinaNeural", "es-CL-LorenzoNeural",
"es-CO-SofiaNeural", "es-CO-GonzaloNeural",
"es-PE-CamilaNeural", "es-PE-AlexNeural",
"es-VE-MariaNeural", "es-VE-ManuelNeural",
"es-US-AlonsoNeural", "es-US-PalomaNeural",
"es-ES-AbrilNeural", "es-ES-DarioNeural",
"es-ES-HelenaRUS", "es-ES-LauraNeural",
"es-ES-PabloNeural", "es-ES-TriniNeural",
"en-US-AriaNeural", "en-US-GuyNeural",
"en-US-JennyNeural", "en-US-AmberNeural",
"en-US-AnaNeural", "en-US-AshleyNeural",
"en-US-BrandonNeural", "en-US-ChristopherNeural",
"en-US-CoraNeural", "en-US-DavisNeural",
"en-US-ElizabethNeural", "en-US-EricNeural",
"en-US-GinaNeural", "en-US-JacobNeural",
"en-US-JaneNeural", "en-US-JasonNeural",
"en-US-MichelleNeural", "en-US-MonicaNeural",
"en-US-SaraNeural", "en-US-SteffanNeural",
"en-US-TonyNeural", "en-US-YaraNeural",
"fr-FR-AlainNeural", "fr-FR-BrigitteNeural",
"fr-FR-CelesteNeural", "fr-FR-ClaudeNeural",
"fr-FR-CoralieNeural", "fr-FR-DeniseNeural",
"fr-FR-EloiseNeural", "fr-FR-HenriNeural",
"fr-FR-JacquelineNeural", "fr-FR-JeromeNeural",
"fr-FR-JosephineNeural", "fr-FR-MauriceNeural",
"fr-FR-YvesNeural", "fr-FR-YvetteNeural",
"de-DE-AmalaNeural", "de-DE-BerndNeural",
"de-DE-ChristophNeural", "de-DE-ConradNeural",
"de-DE-ElkeNeural", "de-DE-GiselaNeural",
"de-DE-KasperNeural", "de-DE-KatjaNeural",
"de-DE-KillianNeural", "de-DE-KlarissaNeural",
"de-DE-KlausNeural", "de-DE-LouisaNeural",
"de-DE-MajaNeural", "de-DE-RalfNeural",
"de-DE-TanjaNeural", "de-DE-ViktoriaNeural",
"it-IT-BenignoNeural", "it-IT-CalimeroNeural",
"it-IT-CataldoNeural", "it-IT-DiegoNeural",
"it-IT-ElsaNeural", "it-IT-FabiolaNeural",
"it-IT-GianniNeural", "it-IT-ImeldaNeural",
"it-IT-IrmaNeural", "it-IT-IsabellaNeural",
"it-IT-LisandroNeural", "it-IT-PalmiraNeural",
"it-IT-PierinaNeural", "it-IT-RinaldoNeural",
"ja-JP-AoiNeural", "ja-JP-DaichiNeural",
"ja-JP-HarukaNeural", "ja-JP-KeitaNeural",
"ja-JP-MayuNeural", "ja-JP-NanamiNeural",
"ja-JP-NaokiNeural", "ja-JP-ShioriNeural"
],
value="es-ES-AlvaroNeural"
)
procesar_btn = gr.Button("Generar Video (Modo Optimizado)")
video_output = gr.Video(label="Video Procesado")
with gr.Accordion("Ejemplos de Uso", open=False):
gr.Examples(
examples=[[EJEMPLO_VIDEO, "隆Hola! Esto es una prueba. Suscr铆bete al canal."]],
inputs=[video_input, texto_tts],
label="Ejemplos"
)
procesar_btn.click(
procesar_video,
inputs=[video_input, texto_tts, voz_seleccionada],
outputs=video_output
)
gr.Markdown("""
### 鈩癸笍 Notas importantes:
- **Optimizaciones para Hugging Face Spaces:**
- Procesamiento por bloques para videos largos
- M谩ximo tama帽o de archivo: 200MB
- Resoluci贸n reducida a 640x360 para procesamiento m谩s r谩pido
- Texto TTS limitado a 1000 caracteres
- Las transiciones ocurren cada 30 segundos
- El video contiene intro y outro predefinidos
- El archivo generado se elimina despu茅s de 1 hora
- Para videos de alta calidad, considera usar este c贸digo localmente
""")
if __name__ == "__main__":
# Instalar psutil si no est谩 disponible
try:
import psutil
except ImportError:
os.system("pip install psutil")
import psutil
demo.queue().launch() |