File size: 7,974 Bytes
edb0494
6405936
 
 
 
 
 
edb0494
6405936
 
edb0494
a7d8817
d49f90c
a7d8817
6405936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e8df3d
6e4f1a9
6405936
 
49f2888
 
a7d8817
b230b71
a7d8817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80b786b
 
 
 
a7d8817
 
 
 
6405936
 
 
 
 
 
 
 
 
 
 
a7d8817
6405936
a7d8817
15a8627
6e4f1a9
0e8df3d
6e4f1a9
 
 
d49f90c
 
 
bd8cfc7
 
 
 
 
 
 
 
a7d6beb
 
6e4f1a9
a7d6beb
 
 
 
 
d49f90c
6e4f1a9
a7d6beb
6e4f1a9
a7d6beb
c9f9263
 
a7d6beb
 
6e4f1a9
4802ce5
a7d6beb
c9f9263
 
a7d6beb
 
c9f9263
 
6e4f1a9
 
 
 
 
 
 
 
 
 
 
 
6405936
6e4f1a9
 
 
 
15a8627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6405936
 
 
 
 
97567b1
 
 
 
 
 
 
6405936
 
 
 
97567b1
6405936
97567b1
 
6405936
 
b230b71
6405936
 
 
 
 
 
 
 
 
 
97567b1
 
 
 
 
 
6405936
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download

from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline

from PIL import Image, ImageDraw
import numpy as np

MODELS = {
    "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
}

config_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="config_promax.json",
)

config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
    controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)

vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")

pipe = StableDiffusionXLFillPipeline.from_pretrained(
    "SG161222/RealVisXL_V5.0_Lightning",
    torch_dtype=torch.float16,
    vae=vae,
    controlnet=model,
    variant="fp16",
).to("cuda")

pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

prompt = "high quality"
(
    prompt_embeds,
    negative_prompt_embeds,
    pooled_prompt_embeds,
    negative_pooled_prompt_embeds,
) = pipe.encode_prompt(prompt, "cuda", True)



"""
def fill_image(image, model_selection):

    margin = 256
    overlap = 24
    # Open the original image
    source = image  # Changed from image["background"] to match new input format
    
    # Calculate new output size
    output_size = (source.width + 2*margin, source.height + 2*margin)
    
    # Create a white background
    background = Image.new('RGB', output_size, (255, 255, 255))
    
    # Calculate position to paste the original image
    position = (margin, margin)
    
    # Paste the original image onto the white background
    background.paste(source, position)
    
    # Create the mask
    mask = Image.new('L', output_size, 255)  # Start with all white
    mask_draw = ImageDraw.Draw(mask)
    mask_draw.rectangle([
        (position[0] + overlap, position[1] + overlap),
        (position[0] + source.width - overlap, position[1] + source.height - overlap)
    ], fill=0)
    
    # Prepare the image for ControlNet
    cnet_image = background.copy()
    cnet_image.paste(0, (0, 0), mask)

    for image in pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        image=cnet_image,
    ):
        yield image, cnet_image

    image = image.convert("RGBA")
    cnet_image.paste(image, (0, 0), mask)

    yield background, cnet_image


@spaces.GPU
def fill_image(image, model_selection):
    source = image
    target_ratio=(9, 16)
    target_height=1280
    overlap=48
    fade_width=24
    max_width = 720
    # Resize the image if it's wider than max_width
    if source.width > max_width:
        scale_factor = max_width / source.width
        new_width = max_width
        new_height = int(source.height * scale_factor)
        source = source.resize((new_width, new_height), Image.LANCZOS)
    
    # Calculate the required height for 9:16 ratio
    target_height = (source.width * target_ratio[1]) // target_ratio[0]
    
    # Calculate margins (only top and bottom)
    margin_y = (target_height - source.height) // 2
    
    # Calculate new output size
    output_size = (source.width, target_height)
    
    # Create a white background
    background = Image.new('RGB', output_size, (255, 255, 255))
    
    # Calculate position to paste the original image
    position = (0, margin_y)
    
    # Paste the original image onto the white background
    background.paste(source, position)
    
    # Create the mask
    mask = Image.new('L', output_size, 255)  # Start with all white
    mask_draw = ImageDraw.Draw(mask)
    mask_draw.rectangle([
        (overlap, margin_y + overlap),
        (source.width - overlap, margin_y + source.height - overlap)
    ], fill=0)
    
    # Prepare the image for ControlNet
    cnet_image = background.copy()
    cnet_image.paste(0, (0, 0), mask)

    for image in pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        image=cnet_image,
    ):
        yield image, cnet_image

    image = image.convert("RGBA")
    cnet_image.paste(image, (0, 0), mask)

    yield background, cnet_image
"""

def fill_image(image, model_selection):
    source = image
    target_ratio = (16, 9)  # Set the new target ratio to 16:9
    target_width = 1280  # Adjust target width based on desired resolution
    overlap = 48
    fade_width = 24
    max_height = 720  # Adjust max height instead of width
    
    # Resize the image if it's taller than max_height
    if source.height > max_height:
        scale_factor = max_height / source.height
        new_height = max_height
        new_width = int(source.width * scale_factor)
        source = source.resize((new_width, new_height), Image.LANCZOS)
    
    # Calculate the required width for the 16:9 ratio
    target_width = (source.height * target_ratio[0]) // target_ratio[1]
    
    # Calculate margins (now left and right)
    margin_x = (target_width - source.width) // 2
    
    # Calculate new output size
    output_size = (target_width, source.height)
    
    # Create a white background
    background = Image.new('RGB', output_size, (255, 255, 255))
    
    # Calculate position to paste the original image
    position = (margin_x, 0)
    
    # Paste the original image onto the white background
    background.paste(source, position)
    
    # Create the mask
    mask = Image.new('L', output_size, 255)  # Start with all white
    mask_draw = ImageDraw.Draw(mask)
    mask_draw.rectangle([
        (margin_x + overlap, overlap),
        (margin_x + source.width - overlap, source.height - overlap)
    ], fill=0)
    
    # Prepare the image for ControlNet
    cnet_image = background.copy()
    cnet_image.paste(0, (0, 0), mask)

    for image in pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        image=cnet_image,
    ):
        yield image, cnet_image

    image = image.convert("RGBA")
    cnet_image.paste(image, (0, 0), mask)

    yield background, cnet_image


def clear_result():
    return gr.update(value=None)


css = """
.gradio-container {
    width: 1024px !important;
}
"""


title = """<h1 align="center">Diffusers Image Fill</h1>
<div align="center">Draw the mask over the subject you want to erase or change.</div>
"""

with gr.Blocks(css=css) as demo:
    gr.HTML(title)

    run_button = gr.Button("Generate")

    with gr.Row():
        input_image = gr.Image(
            type="pil",
            label="Input Image",
            sources=["upload"],
        )

        result = ImageSlider(
            interactive=False,
            label="Generated Image",
        )

    model_selection = gr.Dropdown(
        choices=list(MODELS.keys()),
        value="RealVisXL V5.0 Lightning",
        label="Model",
    )

    run_button.click(
        fn=clear_result,
        inputs=None,
        outputs=result,
    ).then(
        fn=fill_image,
        inputs=[input_image, model_selection],
        outputs=result,
    )


demo.launch(share=False)