gnosticdev's picture
Update app.py
299c2df verified
raw
history blame
4.96 kB
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
from pydub import AudioSegment
from pydub.playback import play
import math
# Función para obtener las voces disponibles
async def get_voices():
voices = await edge_tts.list_voices()
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
# Función principal de conversión de texto a voz
async def text_to_speech(text, voice, rate, pitch):
if not text.strip():
return None, "Please enter text to convert."
if not voice:
return None, "Please select a voice."
voice_short_name = voice.split(" - ")[0]
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path, None
# Función para agregar el fondo musical al speech
def add_background_music(speech_file, background_music_file, output_file):
# Cargar los archivos de audio
speech = AudioSegment.from_mp3(speech_file)
background_music = AudioSegment.from_mp3(background_music_file)
# Ajustar el volumen del fondo musical al 15%
background_music = background_music - 16 # Reducción aproximada para 15%
# Repetir el fondo musical si es más corto que el speech
if len(background_music) < len(speech):
repetitions = math.ceil(len(speech) / len(background_music))
background_music = background_music * repetitions
# Cortar el fondo musical para que coincida con la duración del speech
background_music = background_music[:len(speech)]
# Superponer el speech y el fondo musical
final_audio = speech.overlay(background_music)
# Exportar el audio resultante
final_audio.export(output_file, format="mp3")
print(f"Archivo generado exitosamente: {output_file}")
# Interfaz Gradio
async def tts_interface(text, voice, rate, pitch, background_music):
# Generar el speech
speech_file, warning = await text_to_speech(text, voice, rate, pitch)
if warning:
return None, None, gr.Warning(warning)
# Verificar si se proporcionó un archivo de fondo musical
if background_music is None or background_music == "":
return speech_file, None, None
# Agregar el fondo musical
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
output_file = tmp_file.name
add_background_music(speech_file, background_music, output_file)
# Eliminar el archivo temporal del speech original
os.remove(speech_file)
return output_file, None, None
async def create_demo():
voices = await get_voices()
description = """
Convert text to speech using Microsoft Edge TTS. Adjust speech rate and pitch: 0 is default, positive values increase, negative values decrease.
🎥 **Exciting News: Introducing our Text-to-Video Converter!** 🎥
Take your content creation to the next level with our cutting-edge Text-to-Video Converter!
Transform your words into stunning, professional-quality videos in just a few clicks.
✨ Features:
• Convert text to engaging videos with customizable visuals
• Choose from 40+ languages and 300+ voices
• Perfect for creating audiobooks, storytelling, and language learning materials
• Ideal for educators, content creators, and language enthusiasts
Ready to revolutionize your content? [Click here to try our Text-to-Video Converter now!](https://text2video.wingetgui.com/)
"""
demo = gr.Interface(
fn=tts_interface,
inputs=[
gr.Textbox(label="Input Text", lines=5),
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=""),
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1),
gr.Audio(label="Background Music", type="filepath", optional=True)
],
outputs=[
gr.Audio(label="Generated Audio", type="filepath"),
gr.Image(label="Visualization", visible=False),
gr.Markdown(label="Warning", visible=False)
],
title="Edge TTS Text-to-Speech",
description=description,
article="Experience the power of Edge TTS for text-to-speech conversion, and explore our advanced Text-to-Video Converter for even more creative possibilities!",
analytics_enabled=False,
allow_flagging="manual",
api_name=None
)
return demo
async def main():
demo = await create_demo()
demo.queue(default_concurrency_limit=5)
demo.launch(show_api=False)
if __name__ == "__main__":
asyncio.run(main())