Spaces:
Runtime error
Runtime error
Commit
·
bccf3ee
1
Parent(s):
b51aacd
updated application file
Browse files
app.py
CHANGED
@@ -1,21 +1,15 @@
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
|
3 |
-
import sys
|
4 |
import crepe
|
5 |
-
import spacy
|
6 |
import librosa
|
7 |
-
import subprocess
|
8 |
import gradio as gr
|
9 |
import pandas as pd
|
10 |
from transformers import pipeline, RobertaTokenizerFast, TFRobertaForSequenceClassification
|
11 |
|
12 |
-
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
|
13 |
-
|
14 |
asr = pipeline('automatic-speech-recognition', model='facebook/wav2vec2-large-960h-lv60-self')
|
15 |
tokenizer = RobertaTokenizerFast.from_pretrained("arpanghoshal/EmoRoBERTa")
|
16 |
model = TFRobertaForSequenceClassification.from_pretrained("arpanghoshal/EmoRoBERTa")
|
17 |
emo = pipeline('sentiment-analysis', model='arpanghoshal/EmoRoBERTa')
|
18 |
-
lang_model = spacy.load("spacy/en_core_web_sm")
|
19 |
|
20 |
def transcribe_and_describe(audio):
|
21 |
|
@@ -23,10 +17,6 @@ def transcribe_and_describe(audio):
|
|
23 |
|
24 |
text = asr(audio)['text']
|
25 |
|
26 |
-
doc = lang_model(text)
|
27 |
-
filler_words = [token.text for token in doc if token.pos_ == 'INTJ']
|
28 |
-
filler_word_pr = len(filler_words) / len(doc)
|
29 |
-
|
30 |
flatness = pd.DataFrame(librosa.feature.spectral_flatness(y=audio).T).describe().T
|
31 |
loudness = pd.DataFrame(librosa.feature.rms(audio).T).describe().T
|
32 |
time, frequency, confidence, activation = crepe.predict(audio, sr)
|
@@ -43,15 +33,14 @@ def transcribe_and_describe(audio):
|
|
43 |
|
44 |
emotion = emo(text)[0]['label']
|
45 |
|
46 |
-
return (text,
|
47 |
|
48 |
gr.Interface(
|
49 |
fn=transcribe_and_describe,
|
50 |
inputs=gr.Audio(source="microphone", type="filepath"),
|
51 |
outputs=[
|
52 |
-
gr.Text(label="Transcription"),
|
53 |
gr.Text(label="Rate of Speech (WPM)"),
|
54 |
-
gr.Text(label="Filler Word Percent"),
|
55 |
gr.Text(label="Mean Pitch (Hz)"),
|
56 |
gr.Text(label="Pitch Variation (Hz)"),
|
57 |
gr.Text(label="Mean Volume (W)"),
|
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
|
|
|
3 |
import crepe
|
|
|
4 |
import librosa
|
|
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
7 |
from transformers import pipeline, RobertaTokenizerFast, TFRobertaForSequenceClassification
|
8 |
|
|
|
|
|
9 |
asr = pipeline('automatic-speech-recognition', model='facebook/wav2vec2-large-960h-lv60-self')
|
10 |
tokenizer = RobertaTokenizerFast.from_pretrained("arpanghoshal/EmoRoBERTa")
|
11 |
model = TFRobertaForSequenceClassification.from_pretrained("arpanghoshal/EmoRoBERTa")
|
12 |
emo = pipeline('sentiment-analysis', model='arpanghoshal/EmoRoBERTa')
|
|
|
13 |
|
14 |
def transcribe_and_describe(audio):
|
15 |
|
|
|
17 |
|
18 |
text = asr(audio)['text']
|
19 |
|
|
|
|
|
|
|
|
|
20 |
flatness = pd.DataFrame(librosa.feature.spectral_flatness(y=audio).T).describe().T
|
21 |
loudness = pd.DataFrame(librosa.feature.rms(audio).T).describe().T
|
22 |
time, frequency, confidence, activation = crepe.predict(audio, sr)
|
|
|
33 |
|
34 |
emotion = emo(text)[0]['label']
|
35 |
|
36 |
+
return (text, words_per_minute, mean_pitch, pitch_std, mean_volume, volume_std, mean_spectral_flatness, spectral_flatness_std, emotion)
|
37 |
|
38 |
gr.Interface(
|
39 |
fn=transcribe_and_describe,
|
40 |
inputs=gr.Audio(source="microphone", type="filepath"),
|
41 |
outputs=[
|
42 |
+
gr.Text(label="Transcription"),
|
43 |
gr.Text(label="Rate of Speech (WPM)"),
|
|
|
44 |
gr.Text(label="Mean Pitch (Hz)"),
|
45 |
gr.Text(label="Pitch Variation (Hz)"),
|
46 |
gr.Text(label="Mean Volume (W)"),
|